Portable and on-site electrochemical sensor based on surface molecularly imprinted magnetic covalent organic framework for the rapid detection of tetracycline in food
In this study, for the first time, surface molecularly imprinted magnetic covalent organic frameworks (Fe3O4@COFs@MIPs) were combined with disposable screen-printed electrode (SPE) to construct a portable and on-site electrochemical sensor for the rapid detection of tetracycline (TC). The Fe3O4@COFs@MIPs, which was prepared by layer-by-layer modification method, had good magnetism and excellent adsorption ability. With the help of disposable SPE, equipped with a magnet, the electrode modification process was simplified and the detection efficiency was improved. Under optimal conditions, the fabricated electrochemical sensor exhibited linearity ranging from 1 × 10-10 to 1 × 10-4 g mL-1. It had good selectivity, excellent reproducibility, desirable stability and remarkable applicability. The fabricated sensor was successfully applied to detect TC in real samples with satisfactory recoveries (96.15-106.20%). The detection strategy separated the recognition and adsorption process from the electrochemical detection process, providing a design idea for the application of COFs in the construction of high-efficiency molecularly imprinted electrochemical sensors.