Recognition of freezing of gait in Parkinson’s disease based on combined wearable sensors

加速度计 步态 可穿戴计算机 特征选择 陀螺仪 计算机科学 随机森林 特征(语言学) 模式识别(心理学) 特征提取 人工智能 步态分析 医学 物理医学与康复 工程类 嵌入式系统 语言学 哲学 航空航天工程 操作系统
作者
Kang Ren,Zhonglue Chen,Yun Ling,Jin Zhao
出处
期刊:BMC Neurology [Springer Nature]
卷期号:22 (1) 被引量:17
标识
DOI:10.1186/s12883-022-02732-z
摘要

Abstract Freezing of gait is a common gait disorder among patients with advanced Parkinson’s disease and is associated with falls. This paper designed the relevant experimental procedures to obtain FoG signals from PD patients. Accelerometers, gyroscopes, and force sensing resistor sensors were placed on the lower body of patients. On this basis, the research on the optimal feature extraction method, sensor configuration, and feature quantity selection in the FoG detection process is carried out. Thirteen typical features consisting of time domain, frequency domain and statistical features were extracted from the sensor signals. Firstly, we used the analysis of variance (ANOVA) to select features through comparing the effectiveness of two feature selection methods. Secondly, we evaluated the detection effects with different combinations of sensors to get the best sensors configuration. Finally, we selected the optimal features to construct FoG recognition model based on random forest. After comprehensive consideration of factors such as detection performance, cost, and actual deployment requirements, the 35 features obtained from the left shank gyro and accelerometer, and 78.39% sensitivity, 91.66% specificity, 88.09% accuracy, 77.58% precision and 77.98% f-score were achieved. This objective FoG recognition method has high recognition accuracy, which will be helpful for early FoG symptoms screening and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助方寸采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
3秒前
劲秉应助蓬蒿人采纳,获得10
3秒前
燕小丙完成签到,获得积分10
3秒前
3秒前
4秒前
SYLH应助馨lover采纳,获得100
4秒前
yangshuo发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
wuludie应助小小采纳,获得10
6秒前
z.发布了新的文献求助10
7秒前
青椒炒肉发布了新的文献求助10
7秒前
甜甜冬寒完成签到,获得积分20
8秒前
燕小丙发布了新的文献求助10
8秒前
8秒前
共享精神应助LN采纳,获得10
9秒前
10秒前
kk完成签到,获得积分10
10秒前
梁大海发布了新的文献求助10
10秒前
hhh完成签到,获得积分20
11秒前
谷歌完成签到,获得积分10
11秒前
せん应助Tian采纳,获得10
11秒前
馨lover完成签到,获得积分10
11秒前
C2H5MgBr完成签到,获得积分10
11秒前
12秒前
青椒炒肉完成签到,获得积分10
12秒前
外向访卉发布了新的文献求助10
12秒前
12秒前
万豪发布了新的文献求助10
12秒前
七彩炫光炫你眼完成签到,获得积分10
14秒前
英俊的铭应助如意的秋凌采纳,获得10
14秒前
华新完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178