作者
Hai Wang,Qian Chen,Jianrong Gao,Yichan Zhang,Yaohong Zhang
摘要
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.