亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives

计算机科学 传感器融合 数据科学 人工智能
作者
Yassine Himeur,Bhagawat Rimal,Abhishek Tiwary,Abbes Amira
出处
期刊:Information Fusion [Elsevier BV]
卷期号:86-87: 44-75 被引量:142
标识
DOI:10.1016/j.inffus.2022.06.003
摘要

Analyzing satellite images and remote sensing (RS) data using artificial intelligence (AI) tools and data fusion strategies has recently opened new perspectives for environmental monitoring and assessment. This is mainly due to the advancement of machine learning (ML) and data mining approaches, which facilitate extracting meaningful information at a large scale from geo-referenced and heterogeneous sources. This paper presents the first review of AI-based methodologies and data fusion strategies used for environmental monitoring, to the best of the authors’ knowledge. The first part of the article discusses the main challenges of geographical image analysis. Thereafter, a well-designed taxonomy is introduced to overview the existing frameworks, which have been focused on: (i) detecting different environmental impacts, e.g. land cover land use (LULC) change, gully erosion susceptibility (GES), waterlogging susceptibility (WLS), and land salinity and infertility (LSI); (ii) analyzing AI models deployed for extracting the pertinent features from RS images in addition to data fusion techniques used for combining images and/or features from heterogeneous sources; (iii) describing existing publicly-shared and open-access datasets; (iv) highlighting most frequent evaluation metrics; and (v) describing the most significant applications of ML and data fusion for RS image analysis. This is followed by an overview of existing works and discussions highlighting some of the challenges, limitations and shortcomings. To provide the reader with insight into real-world applications, two case studies illustrate the use of AI for classifying LULC changes and monitoring the environmental impacts due to dams’ construction, where classification accuracies of 98.57% and 97.05% have been reached, respectively. Lastly, recommendations and future directions are drawn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
摇摇奶昔完成签到,获得积分20
12秒前
Everything发布了新的文献求助10
13秒前
田様应助科研通管家采纳,获得10
35秒前
yx_cheng应助科研通管家采纳,获得10
35秒前
量子星尘发布了新的文献求助200
1分钟前
Everything完成签到,获得积分10
1分钟前
像个间谍发布了新的文献求助10
1分钟前
1分钟前
清风明月完成签到 ,获得积分10
1分钟前
比比谁的速度快应助Zephyr采纳,获得200
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
2分钟前
跳跃毒娘发布了新的文献求助10
2分钟前
充电宝应助风中的飞机采纳,获得10
2分钟前
尘远知山静完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
lxh发布了新的文献求助10
3分钟前
李健应助lxh采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
杨柳发布了新的文献求助10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
桦奕兮完成签到 ,获得积分10
4分钟前
像个间谍完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
思源应助杨柳采纳,获得10
5分钟前
Alger发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ZYN完成签到 ,获得积分10
6分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
laity完成签到 ,获得积分10
6分钟前
Eileen发布了新的文献求助20
6分钟前
无花果应助猕猴桃采纳,获得30
6分钟前
善学以致用应助Eileen采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008151
求助须知:如何正确求助?哪些是违规求助? 3547956
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188