亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier BV]
卷期号:123: 198-216 被引量:77
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后凝莲完成签到,获得积分10
1秒前
追逐123完成签到 ,获得积分10
2秒前
江月年完成签到,获得积分10
4秒前
ding应助ST采纳,获得10
7秒前
属实有点拉胯完成签到 ,获得积分10
8秒前
14秒前
19秒前
许三问完成签到 ,获得积分0
19秒前
ST发布了新的文献求助10
19秒前
一一同学发布了新的文献求助30
22秒前
白小超人完成签到 ,获得积分10
26秒前
li发布了新的文献求助10
26秒前
MCRing完成签到,获得积分10
31秒前
学术小白完成签到,获得积分10
36秒前
科研通AI5应助满意的世界采纳,获得50
52秒前
hahhhah完成签到 ,获得积分10
52秒前
song完成签到 ,获得积分10
54秒前
开心绫发布了新的文献求助10
55秒前
Wind0240完成签到,获得积分10
56秒前
Hung完成签到,获得积分10
1分钟前
一一同学完成签到,获得积分10
1分钟前
1分钟前
HY完成签到 ,获得积分10
1分钟前
Light完成签到,获得积分10
1分钟前
1分钟前
li完成签到,获得积分10
1分钟前
菠萝完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
菠萝发布了新的文献求助30
1分钟前
1分钟前
1分钟前
欣喜石头完成签到 ,获得积分10
1分钟前
大学生完成签到 ,获得积分10
1分钟前
吃饱再睡完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176