Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier]
卷期号:123: 198-216 被引量:128
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z126完成签到,获得积分10
1秒前
茄子完成签到,获得积分10
1秒前
11111111完成签到,获得积分10
1秒前
zxm完成签到,获得积分10
2秒前
从容傲柏完成签到,获得积分10
2秒前
Zever完成签到,获得积分10
3秒前
何以解忧完成签到,获得积分10
3秒前
落幕熊猫完成签到,获得积分10
4秒前
瓜瓜瓜完成签到 ,获得积分10
5秒前
香蕉静芙完成签到,获得积分10
6秒前
风之旅完成签到,获得积分10
6秒前
恸哭的千鸟完成签到,获得积分10
6秒前
orixero应助Deabe采纳,获得20
6秒前
7秒前
Xiwen321发布了新的文献求助10
7秒前
MrRaBB完成签到 ,获得积分10
7秒前
研小通完成签到,获得积分10
7秒前
默默松鼠完成签到,获得积分10
7秒前
钟迪完成签到,获得积分10
8秒前
NN完成签到,获得积分10
8秒前
牛牛完成签到,获得积分10
8秒前
tananna完成签到,获得积分10
8秒前
蓝莓西西果冻完成签到,获得积分10
10秒前
科研通AI6应助邱琳采纳,获得10
10秒前
xfyxxh完成签到,获得积分10
11秒前
学术大佬阿呆完成签到 ,获得积分10
11秒前
wwpapple完成签到,获得积分10
12秒前
魏小梅完成签到,获得积分10
12秒前
Xiwen321完成签到,获得积分10
13秒前
李媛媛完成签到,获得积分10
13秒前
lott完成签到,获得积分20
13秒前
13秒前
雪影完成签到 ,获得积分10
13秒前
自信白凡关注了科研通微信公众号
15秒前
ZOEGUO完成签到,获得积分10
15秒前
珷玞完成签到,获得积分10
15秒前
Forest完成签到,获得积分10
15秒前
Hi完成签到,获得积分10
15秒前
科研顺利完成签到,获得积分10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451