Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier]
卷期号:123: 198-216 被引量:77
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梦溪发布了新的文献求助10
刚刚
spirit完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
雁枫应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
不配.应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
好久不见完成签到,获得积分20
7秒前
务实山灵完成签到,获得积分10
8秒前
动人的书雪完成签到,获得积分10
9秒前
9秒前
10秒前
MM11111应助好久不见采纳,获得10
11秒前
atlab发布了新的文献求助200
11秒前
Tree_完成签到 ,获得积分10
12秒前
hzauhzau完成签到,获得积分10
13秒前
13秒前
赵zcq@关注了科研通微信公众号
14秒前
17秒前
香蕉觅云应助zha采纳,获得10
19秒前
在水一方应助Math4396采纳,获得10
19秒前
自觉的凛完成签到,获得积分10
20秒前
善学以致用应助曙丽盼采纳,获得10
23秒前
24秒前
外向的书包完成签到,获得积分10
24秒前
25秒前
fifteen应助DoggyBadiou采纳,获得10
26秒前
Lynn发布了新的文献求助10
28秒前
LNN发布了新的文献求助10
29秒前
zpdkj发布了新的文献求助10
29秒前
31秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240756
求助须知:如何正确求助?哪些是违规求助? 2885497
关于积分的说明 8238799
捐赠科研通 2553913
什么是DOI,文献DOI怎么找? 1382046
科研通“疑难数据库(出版商)”最低求助积分说明 649456
邀请新用户注册赠送积分活动 625079