Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier]
卷期号:123: 198-216 被引量:77
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十月发布了新的文献求助20
1秒前
1秒前
针地很不戳完成签到,获得积分10
1秒前
2秒前
奋斗金连完成签到,获得积分10
2秒前
科研菜鸟完成签到,获得积分10
2秒前
圈圈发布了新的文献求助10
3秒前
zhanglh完成签到 ,获得积分10
3秒前
3秒前
Liu完成签到,获得积分10
3秒前
啊大大哇完成签到,获得积分10
3秒前
一平驳回了HEIKU应助
4秒前
4秒前
草莓奶昔完成签到 ,获得积分10
4秒前
cyx发布了新的文献求助10
4秒前
5秒前
littleJ完成签到,获得积分10
5秒前
Yolo发布了新的文献求助10
5秒前
阿尔法发布了新的文献求助10
6秒前
科研菜鸟发布了新的文献求助10
6秒前
Liu发布了新的文献求助10
6秒前
鱼跃完成签到,获得积分10
7秒前
烟花应助Ricardo采纳,获得10
8秒前
zsh完成签到,获得积分20
8秒前
共享精神应助青wu采纳,获得10
8秒前
8秒前
搜集达人应助十月采纳,获得10
9秒前
慕青应助十月采纳,获得10
9秒前
上官若男应助十月采纳,获得10
9秒前
平淡的亦丝应助十月采纳,获得20
9秒前
10秒前
香蕉擎完成签到 ,获得积分10
10秒前
正常兔子完成签到,获得积分10
11秒前
纯真电源发布了新的文献求助10
11秒前
如果完成签到,获得积分10
12秒前
ludens完成签到,获得积分10
12秒前
12秒前
小蘑菇应助愉快的定帮采纳,获得10
12秒前
皮尤尤完成签到,获得积分20
13秒前
呼呼兔发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678