清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier BV]
卷期号:123: 198-216 被引量:77
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖小羊完成签到 ,获得积分10
1秒前
16秒前
34秒前
柒柒球完成签到 ,获得积分10
38秒前
allrubbish完成签到,获得积分10
39秒前
哈扎尔发布了新的文献求助10
40秒前
49秒前
52秒前
mmmmmmgm完成签到 ,获得积分10
1分钟前
1分钟前
苹果完成签到 ,获得积分10
2分钟前
刘玲完成签到 ,获得积分10
2分钟前
2分钟前
儒雅的山河完成签到 ,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
jerry完成签到 ,获得积分10
2分钟前
通科研完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
MSl发布了新的文献求助10
3分钟前
3分钟前
MSl完成签到,获得积分10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
李健应助无风采纳,获得10
4分钟前
4分钟前
4分钟前
时光翩然轻擦完成签到,获得积分10
5分钟前
5分钟前
Akim应助时光翩然轻擦采纳,获得10
5分钟前
5分钟前
袁青寒发布了新的文献求助10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
6分钟前
6分钟前
耕牛热完成签到,获得积分10
6分钟前
郑琦敏钰完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541217
求助须知:如何正确求助?哪些是违规求助? 3974881
关于积分的说明 12310977
捐赠科研通 3642163
什么是DOI,文献DOI怎么找? 2005731
邀请新用户注册赠送积分活动 1041137
科研通“疑难数据库(出版商)”最低求助积分说明 930365