Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples

山崩 支持向量机 机器学习 人工智能 决策树 计算机科学 贝叶斯概率 随机森林 样品(材料) 算法 样本量测定 地质学 统计 数学 地貌学 物理 热力学
作者
Can Yang,Leilei Liu,Faming Huang,Lei Huang,Xiaomi Wang
出处
期刊:Gondwana Research [Elsevier]
卷期号:123: 198-216 被引量:128
标识
DOI:10.1016/j.gr.2022.05.012
摘要

Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The accuracy of machine learning-based LSA often hinges on the ratio of landslide to non-landslide (or positive/negative, P/N) samples. A proper ratio of the P/N samples will significantly improve the performance of machine learning-based LSA, but an improper ratio can cause inadequate training or data pollution. Conventionally, the determination of the P/N sample ratio is based on experience or by trials and errors, which has substantial uncertainties. This paper proposes a Bayesian optimization method to optimize the P/N sample ratio for machine learning models. Firstly, Anhua County in Hunan province of China is selected as the study area because of numerous landslide disasters that occurred in recent years. Secondly, three representative machine learning models of the support vector machine (SVM), the random forest (RF) and the gradient boost decision tree (GBDT) are adopted to assess the landslide susceptibility. Subsequently, a Bayesian optimization algorithm is used to obtain the optimal P/N sample ratio, considering the effects of various ratios of training/test set. Finally, the improved models and the corresponding landslide susceptibility maps are established using the obtained optimal P/N sample ratio. The results show that the performance of SVM, RF and GBDT are all improved with the optimized P/N sample ratio. The highest AUC value is for the RF model (0.840, improved by 1.3%), followed by GBDT (0.831, improved by 1.3%), and SVM (0.775, improved by 0.7%). However, the RF and GBDT are more suitable than SVM to address sample unbalance issues in LSA. It is suggested to use the Bayesian optimization algorithm to optimize the P/N sample ratio in machine learning-based LSA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
stg完成签到,获得积分10
1秒前
伙腿长发布了新的文献求助10
1秒前
斯文败类应助关于我采纳,获得20
1秒前
Lolo发布了新的文献求助50
2秒前
2秒前
Ava应助xiaoju采纳,获得10
2秒前
杨半鬼发布了新的文献求助30
2秒前
3秒前
积极的雁风完成签到,获得积分10
3秒前
曹孟德完成签到,获得积分10
4秒前
糖哦完成签到,获得积分10
4秒前
嘉平三十发布了新的文献求助10
4秒前
了了完成签到 ,获得积分10
4秒前
如意雅山完成签到,获得积分10
5秒前
kings完成签到,获得积分10
5秒前
orixero应助帕丁顿采纳,获得10
6秒前
雪落完成签到,获得积分10
6秒前
ruogu7完成签到,获得积分10
7秒前
我和狂三贴贴完成签到,获得积分10
7秒前
幽默的羞花完成签到,获得积分10
7秒前
鹿鹿完成签到,获得积分10
7秒前
无奈项链发布了新的文献求助10
7秒前
7秒前
7秒前
大盘菜应助工作还是工作采纳,获得10
7秒前
30040完成签到,获得积分10
7秒前
nnn完成签到,获得积分10
7秒前
8秒前
如意雅山发布了新的文献求助10
8秒前
dwct完成签到,获得积分10
8秒前
AMM完成签到,获得积分10
9秒前
luolidou发布了新的文献求助10
9秒前
明理十三完成签到,获得积分10
9秒前
五十完成签到,获得积分10
9秒前
西伯利亚兔完成签到,获得积分10
9秒前
林妹妹完成签到 ,获得积分10
9秒前
踏雪寻梅完成签到,获得积分10
10秒前
qq发布了新的文献求助10
10秒前
白瑾完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977