Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters

光子学 材料科学 石墨烯 光电子学 硅光子学 纳米技术
作者
Zhuoran Fang,Rui Chen,Jiajiu Zheng,Asir Intisar Khan,Kathryn M. Neilson,Sarah Geiger,Dennis M. Callahan,Michael Moebius,Abhi Saxena,Michelle Chen,Carlos Rı́os,Juejun Hu,Eric Pop,Arka Majumdar
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:17 (8): 842-848 被引量:134
标识
DOI:10.1038/s41565-022-01153-w
摘要

Silicon photonics is evolving from laboratory research to real-world applications with the potential to transform many technologies, including optical neural networks and quantum information processing. A key element for these applications is a reconfigurable switch operating at ultra-low programming energy—a challenging proposition for traditional thermo-optic or free carrier switches. Recent advances in non-volatile programmable silicon photonics based on phase-change materials (PCMs) provide an attractive solution to energy-efficient photonic switches with zero static power, but the programming energy density remains high (hundreds of attojoules per cubic nanometre). Here we demonstrate a non-volatile electrically reconfigurable silicon photonic platform leveraging a monolayer graphene heater with high energy efficiency and endurance. In particular, we show a broadband switch based on the technologically mature PCM Ge2Sb2Te5 and a phase shifter employing the emerging low-loss PCM Sb2Se3. The graphene-assisted photonic switches exhibited an endurance of over 1,000 cycles and a programming energy density of 8.7 ± 1.4 aJ nm–3, that is, within an order of magnitude of the PCM thermodynamic switching energy limit (~1.2 aJ nm–3) and at least a 20-fold reduction in switching energy compared with the state of the art. Our work shows that graphene is a reliable and energy-efficient heater compatible with dielectric platforms, including Si3N4, for technologically relevant non-volatile programmable silicon photonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShengxK完成签到,获得积分10
刚刚
Cindy发布了新的文献求助200
4秒前
renovel完成签到,获得积分10
4秒前
5秒前
葉落葉飄关注了科研通微信公众号
5秒前
6秒前
香蕉觅云应助QXSQX采纳,获得10
6秒前
6秒前
叩桥不渡完成签到,获得积分10
9秒前
善学以致用应助xsuvian采纳,获得10
9秒前
LIJINGGE发布了新的文献求助10
9秒前
10秒前
老实黄蜂完成签到,获得积分10
12秒前
13秒前
13秒前
16秒前
16秒前
Lin_Yongqi完成签到 ,获得积分10
17秒前
cheng发布了新的文献求助10
17秒前
李健应助Cryo采纳,获得10
19秒前
Ava应助LIJINGGE采纳,获得10
19秒前
夏姬宁静完成签到,获得积分10
20秒前
20秒前
神奇白马儿完成签到,获得积分10
21秒前
xsuvian发布了新的文献求助10
21秒前
饱满酸奶发布了新的文献求助10
21秒前
Eid完成签到,获得积分10
22秒前
蔚111完成签到 ,获得积分10
23秒前
科研通AI2S应助yjercou采纳,获得10
23秒前
1111发布了新的文献求助10
24秒前
李爱国应助畅快访蕊采纳,获得10
24秒前
Bellis完成签到 ,获得积分10
25秒前
宁学者发布了新的文献求助20
26秒前
26秒前
xsuvian完成签到,获得积分10
26秒前
老六完成签到 ,获得积分10
28秒前
LIJINGGE完成签到,获得积分10
29秒前
29秒前
asdfg123发布了新的文献求助10
31秒前
yecheng完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813701
关于积分的说明 7901715
捐赠科研通 2473342
什么是DOI,文献DOI怎么找? 1316778
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175