去模糊
核(代数)
计算机科学
编码(集合论)
人工智能
一般化
噪音(视频)
运动模糊
残余物
计算机视觉
转化(遗传学)
图像复原
图像(数学)
算法
图像处理
数学
数学分析
集合(抽象数据类型)
组合数学
程序设计语言
生物化学
化学
基因
作者
Mingyue Wang,Ke-Cheng Chen,Fanqiang Lin
摘要
Motion blur and ambient noise are the main reasons that affect quick response (QR) code recognition. In this paper, we propose a novel deep learning approach to deblur the QR codes and realize the effective recognition of deblurring QR codes by using generative adversarial networks (GANs). We estimate the blur kernel and ambient noise of the blur QR code in the dataset using GANs, so as to realize the transformation from the blur QR code image to the sharp image. We also propose an expansion method of QR codes dataset, and achieve better generalization performance of the model. The experimental results show that our approach can effectively estimate the blur kernel and ambient noise that can realize the deblurring of QR code.
科研通智能强力驱动
Strongly Powered by AbleSci AI