A channel-spatial-temporal attention-based network for vibration-based damage detection

判别式 结构健康监测 计算机科学 水准点(测量) 块(置换群论) 频道(广播) 桥(图论) 数据挖掘 人工智能 模式识别(心理学) 工程类 结构工程 电信 数学 医学 几何学 大地测量学 内科学 地理
作者
Shiyun Liao,Huijun Liu,Jianxi Yang,Yongxin Ge
出处
期刊:Information Sciences [Elsevier BV]
卷期号:606: 213-229 被引量:25
标识
DOI:10.1016/j.ins.2022.05.042
摘要

Structural health monitoring (SHM) is extremely vital for the diagnosis and prognosis of civil structures. As an important part of the SHM system, vibration-based damage detection (VBDD) methods have become a research hotspot with the development of sensor technologies. These methods are utilized to assess structural conditions or localize and classify damages. Recently end-to-end deep learning architectures have been widely used in VBDD tasks and achieved state-of-the-art results. However, there are seldom investigations on the attention mechanism in VBDD, which has been demonstrated as an effective module to extract features in other domains. In this paper, we propose a channel-spatial-temporal attention-based network to refine and enrich the discriminative sample-specific features in three dimensions, namely, channel, space, and time simultaneously. Specifically, the local and global block we designed is to extract the local and global spatial features adaptively, and the grouped self-attention is presented to extract the long- and short-term temporal features. Moreover, the squeeze-and-excitation block is selected to emphasize vital channels. Extensive experiments are conducted on three-span continuous rigid frame bridge scale model and IASC-ASCE benchmark datasets, and the results prove that the proposed method is superior to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助黎明森采纳,获得10
刚刚
1秒前
sdaDAS发布了新的文献求助10
1秒前
2秒前
CipherSage应助guochang采纳,获得10
2秒前
Edward发布了新的文献求助30
3秒前
浮游应助和老爹豆豆采纳,获得10
3秒前
闫小天天完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
666发布了新的文献求助10
5秒前
英俊的铭应助热情的远锋采纳,获得10
5秒前
小二郎应助vebb采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
和谐诗双发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
7秒前
Epiphany发布了新的文献求助10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
蔡宇滔完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Ava应助涔雨采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058