A channel-spatial-temporal attention-based network for vibration-based damage detection

计算机科学 频道(广播) 振动 人工智能 模式识别(心理学) 计算机网络 声学 物理
作者
Shiyun Liao,Huijun Liu,Jianxi Yang,Yongxin Ge
出处
期刊:Information Sciences [Elsevier]
卷期号:606: 213-229 被引量:18
标识
DOI:10.1016/j.ins.2022.05.042
摘要

Structural health monitoring (SHM) is extremely vital for the diagnosis and prognosis of civil structures. As an important part of the SHM system, vibration-based damage detection (VBDD) methods have become a research hotspot with the development of sensor technologies. These methods are utilized to assess structural conditions or localize and classify damages. Recently end-to-end deep learning architectures have been widely used in VBDD tasks and achieved state-of-the-art results. However, there are seldom investigations on the attention mechanism in VBDD, which has been demonstrated as an effective module to extract features in other domains. In this paper, we propose a channel-spatial-temporal attention-based network to refine and enrich the discriminative sample-specific features in three dimensions, namely, channel, space, and time simultaneously. Specifically, the local and global block we designed is to extract the local and global spatial features adaptively, and the grouped self-attention is presented to extract the long- and short-term temporal features. Moreover, the squeeze-and-excitation block is selected to emphasize vital channels. Extensive experiments are conducted on three-span continuous rigid frame bridge scale model and IASC-ASCE benchmark datasets, and the results prove that the proposed method is superior to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到,获得积分20
刚刚
Ava应助qudie采纳,获得10
1秒前
1秒前
2秒前
李健应助毛小毛采纳,获得10
3秒前
含蓄鞅完成签到,获得积分20
4秒前
4秒前
4秒前
包容新蕾发布了新的文献求助10
5秒前
bkagyin应助跳跃采纳,获得10
6秒前
影子1127完成签到,获得积分10
6秒前
ding应助红豆泥采纳,获得10
7秒前
day_on发布了新的文献求助30
7秒前
8秒前
Joanna完成签到,获得积分10
9秒前
11秒前
yoly发布了新的文献求助10
11秒前
666完成签到,获得积分10
13秒前
壮观以松发布了新的文献求助10
15秒前
深情安青应助欢呼的涔采纳,获得10
16秒前
Vivian发布了新的文献求助10
17秒前
橘子完成签到,获得积分10
19秒前
zhangsudi完成签到,获得积分20
19秒前
Owen应助上帝开玩笑采纳,获得30
20秒前
LLL发布了新的文献求助10
21秒前
23秒前
彭于晏应助云上人采纳,获得10
24秒前
24秒前
26秒前
27秒前
27秒前
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
我爱科研发布了新的文献求助10
29秒前
adamchris应助科研通管家采纳,获得10
30秒前
30秒前
慕青应助SGY采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068