Optimized convolution neural network based multiple eye disease detection

计算机科学 卷积神经网络 人工智能 支持向量机 糖尿病性视网膜病变 特征提取 青光眼 模式识别(心理学) 黄斑变性 超参数 精确性和召回率 分类器(UML) 机器学习 医学 眼科 内分泌学 糖尿病
作者
P. Glaret Subin,P. Muthukannan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105648-105648 被引量:39
标识
DOI:10.1016/j.compbiomed.2022.105648
摘要

World health organization (WHO) reports around 2.2 billion people in the world as visually challenged which is mostly due to the age-related eye diseases such as age-related macular degeneration (AMD), cataract, diabetic retinopathy (DR) and glaucoma. These diseases lead to blindness if not diagnosed at an early stage. This paper focuses on the identification of the age-related eye diseases at an early stage using retinal fundus images taken from online dataset and pre-processed using maximum entropy transformation. The pre-processed images were fed to a convolution neural network (CNN), which was optimized using a flower pollination optimization algorithm (FPOA) for feature extraction. Hyperparameters were optimized using FPOA for training the CNN. This increased the speed and the accuracy of the network. The CNN output was fed to a Multiclass Support Vector Machine (MSVM) classifier for the classification of the type of disease. The proposed CNN-based multiple disease detection (CNN-MDD) was tested with the online dataset, namelyOcular Disease Intelligent Recognition (ODIR). The proposed model performance was analysed with the other optimized models which yielded the best performance in terms of precision, accuracy, specificity, recall, and F1 score of 98.30%, 95.27%, 95.21%, and 93.3%, respectively. The proposed method assisted automatic detection of the type of disease. Overall, this approach can be of great assistance to the medical professionals concerned in the treatment of eye diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助10
1秒前
科研通AI2S应助XH采纳,获得10
1秒前
DWL发布了新的文献求助60
3秒前
3秒前
在水一方应助kuai1e采纳,获得10
5秒前
阿忒发布了新的文献求助10
6秒前
6秒前
大个应助毛毛采纳,获得10
7秒前
典雅白卉发布了新的文献求助10
7秒前
专注蚂蚁完成签到,获得积分10
8秒前
清风荷影完成签到,获得积分10
8秒前
西贝贝完成签到,获得积分10
9秒前
周壹发布了新的文献求助10
9秒前
9秒前
10秒前
细心故事完成签到,获得积分10
11秒前
杳鸢应助ccalvintan采纳,获得10
13秒前
搜集达人应助明灯三千采纳,获得10
14秒前
15秒前
元宝同学发布了新的文献求助10
15秒前
fuguier发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
YY发布了新的文献求助10
20秒前
Foxjker发布了新的文献求助10
22秒前
ardejiang发布了新的文献求助10
22秒前
23秒前
田様应助Re2004采纳,获得10
24秒前
25秒前
gigafortress完成签到,获得积分10
27秒前
28秒前
纷纭完成签到,获得积分10
28秒前
Jasper应助Aimemoi采纳,获得10
28秒前
窦香菱发布了新的文献求助10
30秒前
5r应助周壹采纳,获得10
30秒前
ziyan完成签到 ,获得积分10
31秒前
乐乐应助一一采纳,获得10
31秒前
31秒前
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391348
求助须知:如何正确求助?哪些是违规求助? 3002523
关于积分的说明 8804264
捐赠科研通 2689105
什么是DOI,文献DOI怎么找? 1472917
科研通“疑难数据库(出版商)”最低求助积分说明 681272
邀请新用户注册赠送积分活动 674144