Enhancing removal of hydrogen from granular polysilicon by innovating vacuum separation model and method for SoG-Si

材料科学 脱氢 大气压力 硅烷 化学工程 复合材料 光电子学 催化作用 化学 生物化学 有机化学 工程类 海洋学 地质学
作者
Zhiliang Wu,Guoyu Qian,Zhi Wang,Dong Wang,Wenhui Ma
出处
期刊:Solar Energy [Elsevier]
卷期号:241: 492-503 被引量:1
标识
DOI:10.1016/j.solener.2022.06.033
摘要

Silane process of granular polysilicon has become a promising method for the preparation of polysilicon due to its continuous low temperature, simple process and low energy consumption. However, granular silicon contains more hydrogen than conventional columnar silicon, which can result in the deterioration of single crystal furnace thermal field life and rod stability by the “hydrogen jump” in the process of Czochralski method. Hydrogen removal has become an important problem to be solved in the industry development. Thus, we propose a hydrogen separation model suitable for silicon system based on vacuum experiment and thermodynamic calculation, which can provide a theoretical basis for the research and development of silicon dehydrogenation method. The predicted removal rate of hydrogen at different temperatures and vacuum pressures is in good agreement with the experimental results, reflecting the reasonability of the model. The results show that the hydrogen removal rate increases with the increasing of temperature and the decreasing of pressure, where temperature plays a leading role in the removal of hydrogen in silicon. At less than one atmosphere, the increase in dehydrogenation rate by 1 °C ranges from 0.01% to 0.25% in the temperature range from 1450 to 1800°CAt temperatures below 1800°Cthe maximum dehydrogenation rate is less than 0.001% for each 1pa reduction in pressure from one atmospheric pressure to 1000pa. According to the model calculation results, a hydrogen removal method is designed by using the vacuum electromagnetic induction. The deep removal of trace hydrogen in silicon has been realized, hydrogen in silicon drops rapidly from around 20 ppm to less than 5 ppm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助Feng5945采纳,获得10
1秒前
浮浮世世发布了新的文献求助80
1秒前
科目三应助liz采纳,获得30
3秒前
量子星尘发布了新的文献求助10
4秒前
鹿小新完成签到 ,获得积分0
5秒前
6秒前
高兴的大米完成签到,获得积分10
6秒前
郭丽莹发布了新的文献求助30
8秒前
10秒前
always发布了新的文献求助30
11秒前
qiuqiu0999完成签到,获得积分10
11秒前
505完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
钮钴禄鬼鬼完成签到 ,获得积分10
14秒前
14秒前
Criminology34应助无语的成仁采纳,获得10
15秒前
Criminology34应助无语的成仁采纳,获得10
15秒前
linn发布了新的文献求助10
15秒前
Feng5945发布了新的文献求助10
16秒前
千羽完成签到,获得积分10
16秒前
三三得九完成签到 ,获得积分10
16秒前
17秒前
科研通AI6.1应助明理听云采纳,获得10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
always完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
汉堡包应助111采纳,获得10
24秒前
25秒前
qiuqiu0999发布了新的文献求助10
26秒前
星辰大海应助随机采纳,获得10
26秒前
26秒前
大气的冷亦完成签到,获得积分10
27秒前
脑洞疼应助Feng5945采纳,获得10
29秒前
log完成签到,获得积分10
29秒前
郭丽莹完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240