Enhancing removal of hydrogen from granular polysilicon by innovating vacuum separation model and method for SoG-Si

材料科学 脱氢 大气压力 硅烷 化学工程 复合材料 光电子学 催化作用 化学 生物化学 海洋学 地质学 工程类 有机化学
作者
Zhiliang Wu,Guoyu Qian,Zhi Wang,Dong Wang,Wenhui Ma
出处
期刊:Solar Energy [Elsevier BV]
卷期号:241: 492-503 被引量:1
标识
DOI:10.1016/j.solener.2022.06.033
摘要

Silane process of granular polysilicon has become a promising method for the preparation of polysilicon due to its continuous low temperature, simple process and low energy consumption. However, granular silicon contains more hydrogen than conventional columnar silicon, which can result in the deterioration of single crystal furnace thermal field life and rod stability by the “hydrogen jump” in the process of Czochralski method. Hydrogen removal has become an important problem to be solved in the industry development. Thus, we propose a hydrogen separation model suitable for silicon system based on vacuum experiment and thermodynamic calculation, which can provide a theoretical basis for the research and development of silicon dehydrogenation method. The predicted removal rate of hydrogen at different temperatures and vacuum pressures is in good agreement with the experimental results, reflecting the reasonability of the model. The results show that the hydrogen removal rate increases with the increasing of temperature and the decreasing of pressure, where temperature plays a leading role in the removal of hydrogen in silicon. At less than one atmosphere, the increase in dehydrogenation rate by 1 °C ranges from 0.01% to 0.25% in the temperature range from 1450 to 1800°CAt temperatures below 1800°Cthe maximum dehydrogenation rate is less than 0.001% for each 1pa reduction in pressure from one atmospheric pressure to 1000pa. According to the model calculation results, a hydrogen removal method is designed by using the vacuum electromagnetic induction. The deep removal of trace hydrogen in silicon has been realized, hydrogen in silicon drops rapidly from around 20 ppm to less than 5 ppm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小董发布了新的文献求助30
1秒前
Akim应助鱼鱼宇采纳,获得10
2秒前
1234发布了新的文献求助10
2秒前
ss发布了新的文献求助10
2秒前
3秒前
善学以致用应助666采纳,获得10
4秒前
宋博文完成签到,获得积分10
5秒前
欢喜怀绿完成签到,获得积分10
6秒前
7秒前
7秒前
共享精神应助smldx采纳,获得10
7秒前
Always完成签到,获得积分10
8秒前
8秒前
memedaaaah发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
平常的迎夏完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
隐形曼青应助秋澄采纳,获得10
12秒前
12秒前
14秒前
xzn发布了新的文献求助10
14秒前
hahaha发布了新的文献求助10
14秒前
14秒前
青云冰城发布了新的文献求助10
15秒前
oo发布了新的文献求助10
15秒前
15秒前
不倒翁37发布了新的文献求助10
16秒前
cmdan完成签到,获得积分10
16秒前
蓝溺完成签到,获得积分10
17秒前
邵小庆发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
桐桐应助cc采纳,获得10
19秒前
等待吐司应助欢喜代萱采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961