Enhancing removal of hydrogen from granular polysilicon by innovating vacuum separation model and method for SoG-Si

材料科学 脱氢 大气压力 硅烷 化学工程 复合材料 光电子学 催化作用 化学 生物化学 海洋学 地质学 工程类 有机化学
作者
Zhiliang Wu,Guoyu Qian,Zhi Wang,Dong Wang,Wenhui Ma
出处
期刊:Solar Energy [Elsevier BV]
卷期号:241: 492-503 被引量:1
标识
DOI:10.1016/j.solener.2022.06.033
摘要

Silane process of granular polysilicon has become a promising method for the preparation of polysilicon due to its continuous low temperature, simple process and low energy consumption. However, granular silicon contains more hydrogen than conventional columnar silicon, which can result in the deterioration of single crystal furnace thermal field life and rod stability by the “hydrogen jump” in the process of Czochralski method. Hydrogen removal has become an important problem to be solved in the industry development. Thus, we propose a hydrogen separation model suitable for silicon system based on vacuum experiment and thermodynamic calculation, which can provide a theoretical basis for the research and development of silicon dehydrogenation method. The predicted removal rate of hydrogen at different temperatures and vacuum pressures is in good agreement with the experimental results, reflecting the reasonability of the model. The results show that the hydrogen removal rate increases with the increasing of temperature and the decreasing of pressure, where temperature plays a leading role in the removal of hydrogen in silicon. At less than one atmosphere, the increase in dehydrogenation rate by 1 °C ranges from 0.01% to 0.25% in the temperature range from 1450 to 1800°CAt temperatures below 1800°Cthe maximum dehydrogenation rate is less than 0.001% for each 1pa reduction in pressure from one atmospheric pressure to 1000pa. According to the model calculation results, a hydrogen removal method is designed by using the vacuum electromagnetic induction. The deep removal of trace hydrogen in silicon has been realized, hydrogen in silicon drops rapidly from around 20 ppm to less than 5 ppm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助离线采纳,获得10
1秒前
Firmino发布了新的文献求助30
1秒前
3秒前
刘佳欣完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
夏夜黎梦完成签到,获得积分10
7秒前
tanyaru发布了新的文献求助10
7秒前
何以故人初完成签到 ,获得积分10
7秒前
ldgsd完成签到,获得积分10
8秒前
佳loong完成签到,获得积分10
8秒前
9秒前
coldsky完成签到,获得积分10
9秒前
10秒前
科研鸟发布了新的文献求助10
10秒前
11秒前
所所应助lance采纳,获得10
11秒前
bkagyin应助lance采纳,获得10
11秒前
12秒前
boc发布了新的文献求助30
13秒前
coldsky发布了新的文献求助10
14秒前
cxwcn完成签到 ,获得积分10
14秒前
15秒前
彭静琳完成签到 ,获得积分10
16秒前
土豪的皮卡丘完成签到,获得积分10
16秒前
Ode发布了新的文献求助10
16秒前
谦让含玉发布了新的文献求助10
17秒前
开心谷秋完成签到,获得积分10
18秒前
18秒前
忽被云偷走完成签到,获得积分10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
柏林寒冬应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425