光遗传学
体内
刺激
生物神经网络
黑腹果蝇
材料科学
磁性纳米粒子
多路复用
纳米技术
神经活动
神经科学
计算机科学
纳米颗粒
生物系统
生物
化学
生物技术
基因
电信
生物化学
作者
Charles Sebesta,Daniel Torres Hinojosa,Boshuo Wang,Joseph Asfouri,Zhongxi Li,Guillaume Duret,Kaiyi Jiang,Zhen Xiao,Linlin Zhang,Qingbo Zhang,Vicki L. Colvin,Stefan M. Goetz,Angel V. Peterchev,Herman A. Dierick,Gang Bao,Jacob T. Robinson
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-06-27
卷期号:21 (8): 951-958
被引量:17
标识
DOI:10.1038/s41563-022-01281-7
摘要
Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.
科研通智能强力驱动
Strongly Powered by AbleSci AI