Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle

数学 统计 最佳线性无偏预测 人口 选择(遗传算法) 计算机科学 医学 环境卫生 人工智能
作者
Mohamadreza Afrazandeh,Rostam Abdolahi-Arpanahi,Mokhtar Ali Abbasi,Nasser Emam Jomeh Kashan,Rasoul Vaez Torshizi
出处
期刊:Journal of Dairy Research [Cambridge University Press]
卷期号:89 (2): 121-127 被引量:3
标识
DOI:10.1017/s0022029922000395
摘要

Abstract We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV), daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRP GR ) and VanRaden (DRP VR ) were used as dependent variables. The effects of three weighting methods for diagonal elements of the incidence matrix associated with residuals were also explored. The reliability and the absolute deviation from 1 of the regression coefficient of the response variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in the validation population. In the ssGBLUP method, the genomic prediction reliability and Dev from un-weighted DRP GR method for milk yield were 0.44 and 0.002, respectively. In the GBLUP method, the corresponding measurements from un-weighted EBV for fat were 0.52 and 0.008, respectively. Moreover, the un-weighted DRP GR performed well in ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from ssGBLUP of the un-weighted DRP GR for milk and fat yield and weighted DRP GR for protein yield outperformed other models. The average reliability of genomic predictions for three traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP. The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and 0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed GBLUP both in terms of reliability and bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyuun完成签到 ,获得积分10
刚刚
cheng驳回了大个应助
1秒前
六七七完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
无名完成签到,获得积分10
3秒前
胡萝啵啵完成签到,获得积分10
5秒前
5秒前
奶酪包完成签到,获得积分10
5秒前
坦率的香烟完成签到,获得积分10
6秒前
6秒前
8秒前
cute伊完成签到,获得积分10
8秒前
浮游应助踏实的逍遥采纳,获得10
10秒前
爱学习的考拉完成签到,获得积分10
10秒前
小杭76应助光亮的思柔采纳,获得10
11秒前
11秒前
CipherSage应助激昂的雪枫采纳,获得50
13秒前
cute伊发布了新的文献求助10
13秒前
英俊的铭应助聆风采纳,获得10
15秒前
16秒前
16秒前
xcc完成签到,获得积分10
17秒前
17秒前
18秒前
li发布了新的文献求助10
20秒前
小强呐完成签到 ,获得积分10
20秒前
草木发布了新的文献求助10
21秒前
21秒前
窝窝头发布了新的文献求助10
21秒前
lxx完成签到,获得积分10
21秒前
22秒前
小强呐关注了科研通微信公众号
22秒前
李啊啊啊完成签到,获得积分10
23秒前
嘟嘟完成签到,获得积分10
23秒前
24秒前
1Yer6发布了新的文献求助10
24秒前
vrellik发布了新的文献求助10
24秒前
Yu完成签到,获得积分10
24秒前
聆风发布了新的文献求助10
26秒前
wxyshare应助lxcy0612采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914223
求助须知:如何正确求助?哪些是违规求助? 4188690
关于积分的说明 13008744
捐赠科研通 3957434
什么是DOI,文献DOI怎么找? 2169808
邀请新用户注册赠送积分活动 1188078
关于科研通互助平台的介绍 1095707