Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle

数学 统计 最佳线性无偏预测 人口 选择(遗传算法) 计算机科学 医学 环境卫生 人工智能
作者
Mohamadreza Afrazandeh,Rostam Abdolahi-Arpanahi,Mokhtar Ali Abbasi,Nasser Emam Jomeh Kashan,Rasoul Vaez Torshizi
出处
期刊:Journal of Dairy Research [Cambridge University Press]
卷期号:89 (2): 121-127 被引量:3
标识
DOI:10.1017/s0022029922000395
摘要

Abstract We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV), daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRP GR ) and VanRaden (DRP VR ) were used as dependent variables. The effects of three weighting methods for diagonal elements of the incidence matrix associated with residuals were also explored. The reliability and the absolute deviation from 1 of the regression coefficient of the response variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in the validation population. In the ssGBLUP method, the genomic prediction reliability and Dev from un-weighted DRP GR method for milk yield were 0.44 and 0.002, respectively. In the GBLUP method, the corresponding measurements from un-weighted EBV for fat were 0.52 and 0.008, respectively. Moreover, the un-weighted DRP GR performed well in ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from ssGBLUP of the un-weighted DRP GR for milk and fat yield and weighted DRP GR for protein yield outperformed other models. The average reliability of genomic predictions for three traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP. The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and 0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed GBLUP both in terms of reliability and bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助HHZ采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
可爱的函函应助不倒翁采纳,获得10
1秒前
欣慰以晴完成签到 ,获得积分10
1秒前
桐桐应助echo采纳,获得10
1秒前
2秒前
2秒前
拼搏向上完成签到,获得积分10
3秒前
开放耳机发布了新的文献求助10
3秒前
煎妮发布了新的文献求助10
3秒前
3秒前
小树完成签到,获得积分10
4秒前
6秒前
AAA发布了新的文献求助10
6秒前
甜蜜乐松发布了新的文献求助10
7秒前
北川宾一完成签到,获得积分10
8秒前
随便发布了新的文献求助10
8秒前
9秒前
CipherSage应助王莫为采纳,获得10
9秒前
10秒前
10秒前
桐桐应助zkyyy采纳,获得10
11秒前
11秒前
林深沉发布了新的文献求助10
12秒前
NiuNiu发布了新的文献求助10
13秒前
13秒前
FashionBoy应助猛犸象冲冲冲采纳,获得10
13秒前
小赐完成签到,获得积分20
14秒前
14秒前
星辰大海应助马子妍采纳,获得10
14秒前
lala发布了新的文献求助10
15秒前
JamesPei应助444采纳,获得10
15秒前
玄天明月完成签到 ,获得积分10
15秒前
Ztx发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Lyy发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605669
求助须知:如何正确求助?哪些是违规求助? 4690288
关于积分的说明 14863003
捐赠科研通 4702367
什么是DOI,文献DOI怎么找? 2542226
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142