Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle

数学 统计 最佳线性无偏预测 人口 选择(遗传算法) 计算机科学 医学 环境卫生 人工智能
作者
Mohamadreza Afrazandeh,Rostam Abdolahi-Arpanahi,Mokhtar Ali Abbasi,Nasser Emam Jomeh Kashan,Rasoul Vaez Torshizi
出处
期刊:Journal of Dairy Research [Cambridge University Press]
卷期号:89 (2): 121-127 被引量:3
标识
DOI:10.1017/s0022029922000395
摘要

Abstract We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV), daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRP GR ) and VanRaden (DRP VR ) were used as dependent variables. The effects of three weighting methods for diagonal elements of the incidence matrix associated with residuals were also explored. The reliability and the absolute deviation from 1 of the regression coefficient of the response variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in the validation population. In the ssGBLUP method, the genomic prediction reliability and Dev from un-weighted DRP GR method for milk yield were 0.44 and 0.002, respectively. In the GBLUP method, the corresponding measurements from un-weighted EBV for fat were 0.52 and 0.008, respectively. Moreover, the un-weighted DRP GR performed well in ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from ssGBLUP of the un-weighted DRP GR for milk and fat yield and weighted DRP GR for protein yield outperformed other models. The average reliability of genomic predictions for three traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP. The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and 0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed GBLUP both in terms of reliability and bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助sunyanghu369采纳,获得10
刚刚
JY发布了新的文献求助10
1秒前
羽寞发布了新的文献求助10
1秒前
心灵美天奇完成签到 ,获得积分10
1秒前
1秒前
华仔发布了新的文献求助10
2秒前
SciGPT应助江苏大猩猩采纳,获得10
2秒前
lkl发布了新的文献求助10
2秒前
浮浮世世发布了新的文献求助10
2秒前
小章完成签到 ,获得积分10
2秒前
ding应助湖里鱼采纳,获得10
3秒前
3秒前
3秒前
卡布奇诺发布了新的文献求助20
3秒前
1234发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
忧郁道之完成签到 ,获得积分10
4秒前
lemperory发布了新的文献求助10
4秒前
5秒前
QC发布了新的文献求助10
5秒前
单薄滑板完成签到,获得积分20
6秒前
6秒前
义气的菲鹰完成签到,获得积分10
6秒前
7秒前
Gengli发布了新的文献求助10
7秒前
小二郎应助Aurora采纳,获得10
7秒前
7秒前
YC完成签到,获得积分10
7秒前
思源应助XIAONIE25采纳,获得10
7秒前
玉洁完成签到,获得积分10
8秒前
8秒前
8秒前
单薄滑板发布了新的文献求助10
9秒前
科研通AI6应助大胆的蜜粉采纳,获得10
9秒前
领导范儿应助大胆的蜜粉采纳,获得10
9秒前
二雷子完成签到,获得积分10
9秒前
小明完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271