Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle

数学 统计 最佳线性无偏预测 人口 选择(遗传算法) 计算机科学 医学 环境卫生 人工智能
作者
Mohamadreza Afrazandeh,Rostam Abdolahi-Arpanahi,Mokhtar Ali Abbasi,Nasser Emam Jomeh Kashan,Rasoul Vaez Torshizi
出处
期刊:Journal of Dairy Research [Cambridge University Press]
卷期号:89 (2): 121-127 被引量:3
标识
DOI:10.1017/s0022029922000395
摘要

Abstract We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV), daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRP GR ) and VanRaden (DRP VR ) were used as dependent variables. The effects of three weighting methods for diagonal elements of the incidence matrix associated with residuals were also explored. The reliability and the absolute deviation from 1 of the regression coefficient of the response variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in the validation population. In the ssGBLUP method, the genomic prediction reliability and Dev from un-weighted DRP GR method for milk yield were 0.44 and 0.002, respectively. In the GBLUP method, the corresponding measurements from un-weighted EBV for fat were 0.52 and 0.008, respectively. Moreover, the un-weighted DRP GR performed well in ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from ssGBLUP of the un-weighted DRP GR for milk and fat yield and weighted DRP GR for protein yield outperformed other models. The average reliability of genomic predictions for three traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP. The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and 0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed GBLUP both in terms of reliability and bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hubanj完成签到,获得积分10
刚刚
小二郎应助XiYang采纳,获得10
刚刚
卡卡西发布了新的文献求助20
1秒前
充电宝应助xu采纳,获得10
10秒前
ds完成签到,获得积分10
11秒前
11秒前
LALALA发布了新的文献求助10
11秒前
社科狗发布了新的文献求助10
12秒前
13秒前
华仔应助Ting采纳,获得10
16秒前
XiYang发布了新的文献求助10
16秒前
ZY发布了新的文献求助10
17秒前
ycp完成签到,获得积分10
19秒前
一诺相许完成签到 ,获得积分10
20秒前
应俊完成签到 ,获得积分10
22秒前
Muncy发布了新的文献求助30
23秒前
踏实三问完成签到,获得积分10
23秒前
大个应助安静碧灵采纳,获得10
23秒前
星辰大海应助Ting采纳,获得10
24秒前
woheyumi完成签到 ,获得积分10
24秒前
25秒前
韦小强发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
xuanxuan发布了新的文献求助10
29秒前
Ting发布了新的文献求助10
31秒前
CDC发布了新的文献求助10
31秒前
科研通AI6应助点墨采纳,获得10
31秒前
嘿嘿发布了新的文献求助10
33秒前
LY发布了新的文献求助10
34秒前
34秒前
科研通AI6应助gentlewen采纳,获得10
36秒前
安静碧灵发布了新的文献求助10
38秒前
高兴的盼夏应助xuanxuan采纳,获得20
42秒前
42秒前
哈哈完成签到,获得积分10
47秒前
53秒前
一叶知秋8980完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521