Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle

数学 统计 最佳线性无偏预测 人口 选择(遗传算法) 计算机科学 医学 环境卫生 人工智能
作者
Mohamadreza Afrazandeh,Rostam Abdolahi-Arpanahi,Mokhtar Ali Abbasi,Nasser Emam Jomeh Kashan,Rasoul Vaez Torshizi
出处
期刊:Journal of Dairy Research [Cambridge University Press]
卷期号:89 (2): 121-127 被引量:3
标识
DOI:10.1017/s0022029922000395
摘要

Abstract We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV), daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRP GR ) and VanRaden (DRP VR ) were used as dependent variables. The effects of three weighting methods for diagonal elements of the incidence matrix associated with residuals were also explored. The reliability and the absolute deviation from 1 of the regression coefficient of the response variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in the validation population. In the ssGBLUP method, the genomic prediction reliability and Dev from un-weighted DRP GR method for milk yield were 0.44 and 0.002, respectively. In the GBLUP method, the corresponding measurements from un-weighted EBV for fat were 0.52 and 0.008, respectively. Moreover, the un-weighted DRP GR performed well in ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from ssGBLUP of the un-weighted DRP GR for milk and fat yield and weighted DRP GR for protein yield outperformed other models. The average reliability of genomic predictions for three traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP. The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and 0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed GBLUP both in terms of reliability and bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助vv采纳,获得10
1秒前
xzp发布了新的文献求助10
1秒前
时之沙发布了新的文献求助10
2秒前
florist完成签到,获得积分10
2秒前
淡水痕完成签到 ,获得积分10
2秒前
bkagyin应助liuchzzyy采纳,获得10
6秒前
6秒前
体贴静竹发布了新的文献求助10
6秒前
6秒前
科研通AI6.2应助梁寒采纳,获得10
7秒前
把狗摆反应助AA采纳,获得10
8秒前
xinqing关注了科研通微信公众号
9秒前
谭朵朵发布了新的文献求助10
10秒前
May发布了新的文献求助10
11秒前
香蕉觅云应助专注的尔云采纳,获得10
11秒前
糊涂的萍发布了新的文献求助10
12秒前
xzp完成签到,获得积分10
12秒前
13秒前
14秒前
科研通AI6.1应助lee采纳,获得10
15秒前
李大白完成签到 ,获得积分10
16秒前
16秒前
拼搏的小鱼完成签到 ,获得积分10
17秒前
vv发布了新的文献求助10
20秒前
鹿过完成签到,获得积分10
24秒前
24秒前
梁寒发布了新的文献求助10
25秒前
25秒前
CipherSage应助大力的图图采纳,获得10
26秒前
yyyyy发布了新的文献求助30
28秒前
29秒前
Edenmy完成签到,获得积分10
30秒前
hyyyh发布了新的文献求助10
31秒前
eric完成签到,获得积分10
33秒前
34秒前
小马甲应助糊涂的萍采纳,获得10
34秒前
Ytion发布了新的文献求助10
34秒前
Leeee完成签到,获得积分10
35秒前
maox1aoxin完成签到,获得积分0
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623