化学
分析物
氧化剂
检出限
荧光
双模
分析化学(期刊)
纳米技术
组合化学
色谱法
光学
有机化学
物理
工程类
航空航天工程
材料科学
作者
Xinyi Yang,Zhenzhen Cai,Dezhong Li,Da Lei,Yushu Li,Guangfa Wang,Jun Zhang,Xincun Dou
标识
DOI:10.1021/acs.analchem.2c01894
摘要
Although a set of functional molecules with the D-π-A structure has been explored as optical probes for the detection of target analytes, it remains a great challenge to elaborately design a single probe for distinguishing different analytes by their intrinsic oxidation or reduction capabilities and thus to generate distinct optical responses. Here, a unique TCF-based probe (DMA-CN) containing two unsaturated double bonds in the π-conjugation bridge and TCF with different reaction activities that could be cut off by KMnO4 and NaClO in varying degrees was developed, causing remarkably distinguishable responses for both fluorescence and colorimetric channels to discriminate KMnO4 and NaClO from each other. The fluorescence and colorimetric limits of detection (LODs) of the proposed DMA-CN toward KMnO4 were calculated as 60 and 91 nM, respectively, while those for NaClO were 13.3 and 214 nM, and all the optical signal change can be observed within 1 s with good specificity. Based on the proposed probe design strategy, a well-fabricated test strip was proven to be promising for the rapid, in-field detection and risk management. We expect that the present probe design methodology would provide a powerful strategy for efficient probe exploration, especially for discriminating the substances with similar oxidizing properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI