Deep residual-SVD network for brain image registration

计算机科学 人工智能 图像配准 奇异值分解 残余物 噪音(视频) 降噪 公制(单位) 模式识别(心理学) 体素 Sørensen–骰子系数 计算机视觉 图像(数学) 算法 图像分割 运营管理 经济
作者
Kunpeng Cui,Yusong Lin,Yue Liu,Yinghao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 144002-144002 被引量:1
标识
DOI:10.1088/1361-6560/ac79fa
摘要

Objective.Medical image registration aims to find the deformation field that can align two images in a spatial position. A medical image registration method based on U-Net architecture has been proposed currently. However, U-Net architecture has few training parameters, which leads to weak learning ability, and it ignores the adverse effects of image noise on the registration accuracy. The article aims at addressing the problem of weak network learning ability and the adverse effects of noisy images on registration.Approach.Here we propose a novel unsupervised 3D brain image registration framework, which introduces the residual unit and singular value decomposition (SVD) denoising layer on the U-Net architecture. Residual unit solves the problem of network degradation, that is, registration accuracy becomes saturated and then degrades rapidly with the increase in network depth. SVD denoising layer uses the estimated model order for SVD-based low-rank image reconstruction. we use Akaike information criterion to estimate the appropriate model order, which is used to remove noise components. We use the exponential linear unit (ELU) as the activation function, which is more robust to noise than other peers.Main results.The proposed method is evaluated on the publicly available brain MRI datasets: Mindboggle101 and LPBA40. Experimental results demonstrate our method outperforms several state-of-the-art methods for the metric of Dice Score. The mean number of folding voxels and registration time are comparable to state-of-the-art methods.Significance.This study shows that Deep Residual-SVD Network can improve registration accuracy. This study also demonstrate that the residual unit can enhance the learning ability of the network, the SVD denoising layer can denoise effectively, and the ELU is more robust to noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
柏柳关注了科研通微信公众号
1秒前
2秒前
2秒前
Bling婉完成签到,获得积分10
2秒前
Frank应助Oooner采纳,获得10
2秒前
dong发布了新的文献求助10
2秒前
3秒前
4秒前
爆米花应助星光点点采纳,获得10
4秒前
自由的蒜苗完成签到,获得积分10
4秒前
Owen应助lalalal采纳,获得10
5秒前
科研通AI6应助哈哈王子采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
华仔应助邵邵采纳,获得10
6秒前
马不停蹄关注了科研通微信公众号
6秒前
吴雨涛发布了新的文献求助10
6秒前
7秒前
wd完成签到,获得积分10
7秒前
领导范儿应助MET1采纳,获得10
8秒前
顺心的卿完成签到,获得积分10
8秒前
orixero应助zhhhh采纳,获得10
8秒前
追寻的大米完成签到,获得积分20
9秒前
guihai发布了新的文献求助10
9秒前
9秒前
安静的春天应助奋斗往事采纳,获得20
12秒前
爆米花应助琪琪要发SCI采纳,获得10
12秒前
12秒前
ff发布了新的文献求助10
12秒前
烟花应助4444采纳,获得20
13秒前
汉堡包应助瑞祯采纳,获得10
13秒前
14秒前
15秒前
猫探长发布了新的文献求助10
15秒前
哒哒哒完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468569
求助须知:如何正确求助?哪些是违规求助? 4571972
关于积分的说明 14333100
捐赠科研通 4498720
什么是DOI,文献DOI怎么找? 2464680
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427914