Deep residual-SVD network for brain image registration

计算机科学 人工智能 图像配准 奇异值分解 残余物 噪音(视频) 降噪 公制(单位) 模式识别(心理学) 体素 Sørensen–骰子系数 计算机视觉 图像(数学) 算法 图像分割 运营管理 经济
作者
Kunpeng Cui,Yusong Lin,Yue Liu,Yinghao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 144002-144002 被引量:1
标识
DOI:10.1088/1361-6560/ac79fa
摘要

Objective.Medical image registration aims to find the deformation field that can align two images in a spatial position. A medical image registration method based on U-Net architecture has been proposed currently. However, U-Net architecture has few training parameters, which leads to weak learning ability, and it ignores the adverse effects of image noise on the registration accuracy. The article aims at addressing the problem of weak network learning ability and the adverse effects of noisy images on registration.Approach.Here we propose a novel unsupervised 3D brain image registration framework, which introduces the residual unit and singular value decomposition (SVD) denoising layer on the U-Net architecture. Residual unit solves the problem of network degradation, that is, registration accuracy becomes saturated and then degrades rapidly with the increase in network depth. SVD denoising layer uses the estimated model order for SVD-based low-rank image reconstruction. we use Akaike information criterion to estimate the appropriate model order, which is used to remove noise components. We use the exponential linear unit (ELU) as the activation function, which is more robust to noise than other peers.Main results.The proposed method is evaluated on the publicly available brain MRI datasets: Mindboggle101 and LPBA40. Experimental results demonstrate our method outperforms several state-of-the-art methods for the metric of Dice Score. The mean number of folding voxels and registration time are comparable to state-of-the-art methods.Significance.This study shows that Deep Residual-SVD Network can improve registration accuracy. This study also demonstrate that the residual unit can enhance the learning ability of the network, the SVD denoising layer can denoise effectively, and the ELU is more robust to noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小祖宗发布了新的文献求助10
1秒前
ricardo完成签到,获得积分10
1秒前
酷波er应助刘小博采纳,获得10
2秒前
星辰大海应助尊敬的丹烟采纳,获得10
3秒前
3秒前
桐桐应助Dragonfln采纳,获得10
3秒前
4秒前
李鹏关注了科研通微信公众号
4秒前
搜集达人应助wujun采纳,获得10
5秒前
6秒前
冷笑完成签到,获得积分10
7秒前
孤独丹秋完成签到,获得积分10
9秒前
研友_VZG7GZ应助染染采纳,获得10
9秒前
异想天开完成签到,获得积分10
10秒前
10秒前
11秒前
诚心的雁发布了新的文献求助10
11秒前
11秒前
星辰大海应助xinL采纳,获得10
12秒前
12秒前
万能图书馆应助terryok采纳,获得10
12秒前
酷波er应助舒心小海豚采纳,获得10
12秒前
仿生人完成签到,获得积分10
13秒前
酷酷的如天完成签到,获得积分10
13秒前
疏雨发布了新的文献求助10
13秒前
别摆烂了发布了新的文献求助10
15秒前
CHBW发布了新的文献求助10
16秒前
17秒前
19秒前
yyzhou应助科研通管家采纳,获得10
19秒前
Criminology34应助Isla07采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得30
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244