Deep residual-SVD network for brain image registration

计算机科学 人工智能 图像配准 奇异值分解 残余物 噪音(视频) 降噪 公制(单位) 模式识别(心理学) 体素 Sørensen–骰子系数 计算机视觉 图像(数学) 算法 图像分割 运营管理 经济
作者
Kunpeng Cui,Yusong Lin,Yue Liu,Yinghao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 144002-144002 被引量:1
标识
DOI:10.1088/1361-6560/ac79fa
摘要

Objective.Medical image registration aims to find the deformation field that can align two images in a spatial position. A medical image registration method based on U-Net architecture has been proposed currently. However, U-Net architecture has few training parameters, which leads to weak learning ability, and it ignores the adverse effects of image noise on the registration accuracy. The article aims at addressing the problem of weak network learning ability and the adverse effects of noisy images on registration.Approach.Here we propose a novel unsupervised 3D brain image registration framework, which introduces the residual unit and singular value decomposition (SVD) denoising layer on the U-Net architecture. Residual unit solves the problem of network degradation, that is, registration accuracy becomes saturated and then degrades rapidly with the increase in network depth. SVD denoising layer uses the estimated model order for SVD-based low-rank image reconstruction. we use Akaike information criterion to estimate the appropriate model order, which is used to remove noise components. We use the exponential linear unit (ELU) as the activation function, which is more robust to noise than other peers.Main results.The proposed method is evaluated on the publicly available brain MRI datasets: Mindboggle101 and LPBA40. Experimental results demonstrate our method outperforms several state-of-the-art methods for the metric of Dice Score. The mean number of folding voxels and registration time are comparable to state-of-the-art methods.Significance.This study shows that Deep Residual-SVD Network can improve registration accuracy. This study also demonstrate that the residual unit can enhance the learning ability of the network, the SVD denoising layer can denoise effectively, and the ELU is more robust to noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助石榴采纳,获得10
刚刚
刚刚
yexyz发布了新的文献求助10
刚刚
顺心香露完成签到,获得积分10
刚刚
syn发布了新的文献求助10
刚刚
杨欢完成签到,获得积分10
1秒前
1秒前
搜集达人应助wanci采纳,获得10
2秒前
淡淡夕阳完成签到,获得积分10
2秒前
小八统治世界完成签到,获得积分10
2秒前
2秒前
2秒前
99663232完成签到,获得积分10
2秒前
3秒前
失眠忆曼完成签到,获得积分10
3秒前
3秒前
娃娃菜完成签到,获得积分10
3秒前
Ava应助斗转星移采纳,获得10
4秒前
4秒前
云解完成签到,获得积分10
5秒前
zerk完成签到,获得积分10
5秒前
ww完成签到,获得积分10
5秒前
多情以山发布了新的文献求助10
5秒前
lswhyr发布了新的文献求助20
5秒前
布吉布发布了新的文献求助10
6秒前
6秒前
岁城发布了新的文献求助10
7秒前
7秒前
领导范儿应助LEE采纳,获得10
7秒前
wy完成签到,获得积分10
8秒前
苏休夫发布了新的文献求助10
8秒前
李火火火完成签到,获得积分10
8秒前
8秒前
9秒前
YCQ发布了新的文献求助10
10秒前
内容涉嫌违规完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
浅水鱼完成签到,获得积分10
12秒前
yexyz完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503