Deep residual-SVD network for brain image registration

计算机科学 人工智能 图像配准 奇异值分解 残余物 噪音(视频) 降噪 公制(单位) 模式识别(心理学) 体素 Sørensen–骰子系数 计算机视觉 图像(数学) 算法 图像分割 运营管理 经济
作者
Kunpeng Cui,Yusong Lin,Yue Liu,Yinghao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 144002-144002 被引量:1
标识
DOI:10.1088/1361-6560/ac79fa
摘要

Objective.Medical image registration aims to find the deformation field that can align two images in a spatial position. A medical image registration method based on U-Net architecture has been proposed currently. However, U-Net architecture has few training parameters, which leads to weak learning ability, and it ignores the adverse effects of image noise on the registration accuracy. The article aims at addressing the problem of weak network learning ability and the adverse effects of noisy images on registration.Approach.Here we propose a novel unsupervised 3D brain image registration framework, which introduces the residual unit and singular value decomposition (SVD) denoising layer on the U-Net architecture. Residual unit solves the problem of network degradation, that is, registration accuracy becomes saturated and then degrades rapidly with the increase in network depth. SVD denoising layer uses the estimated model order for SVD-based low-rank image reconstruction. we use Akaike information criterion to estimate the appropriate model order, which is used to remove noise components. We use the exponential linear unit (ELU) as the activation function, which is more robust to noise than other peers.Main results.The proposed method is evaluated on the publicly available brain MRI datasets: Mindboggle101 and LPBA40. Experimental results demonstrate our method outperforms several state-of-the-art methods for the metric of Dice Score. The mean number of folding voxels and registration time are comparable to state-of-the-art methods.Significance.This study shows that Deep Residual-SVD Network can improve registration accuracy. This study also demonstrate that the residual unit can enhance the learning ability of the network, the SVD denoising layer can denoise effectively, and the ELU is more robust to noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
刀剑完成签到,获得积分20
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
烟花应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1101592875应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
刀剑发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助积极的夏天采纳,获得30
7秒前
123发布了新的文献求助10
9秒前
9秒前
11秒前
shaohua2011发布了新的文献求助10
11秒前
22222发布了新的文献求助10
12秒前
Charon发布了新的文献求助10
15秒前
桐桐应助ray采纳,获得10
15秒前
17秒前
qq完成签到 ,获得积分10
21秒前
哈哈哈完成签到 ,获得积分10
21秒前
22秒前
一颗蘑古力完成签到 ,获得积分10
25秒前
落尘完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655