Deep residual-SVD network for brain image registration

计算机科学 人工智能 图像配准 奇异值分解 残余物 噪音(视频) 降噪 公制(单位) 模式识别(心理学) 体素 Sørensen–骰子系数 计算机视觉 图像(数学) 算法 图像分割 运营管理 经济
作者
Kunpeng Cui,Yusong Lin,Yue Liu,Yinghao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 144002-144002 被引量:1
标识
DOI:10.1088/1361-6560/ac79fa
摘要

Objective.Medical image registration aims to find the deformation field that can align two images in a spatial position. A medical image registration method based on U-Net architecture has been proposed currently. However, U-Net architecture has few training parameters, which leads to weak learning ability, and it ignores the adverse effects of image noise on the registration accuracy. The article aims at addressing the problem of weak network learning ability and the adverse effects of noisy images on registration.Approach.Here we propose a novel unsupervised 3D brain image registration framework, which introduces the residual unit and singular value decomposition (SVD) denoising layer on the U-Net architecture. Residual unit solves the problem of network degradation, that is, registration accuracy becomes saturated and then degrades rapidly with the increase in network depth. SVD denoising layer uses the estimated model order for SVD-based low-rank image reconstruction. we use Akaike information criterion to estimate the appropriate model order, which is used to remove noise components. We use the exponential linear unit (ELU) as the activation function, which is more robust to noise than other peers.Main results.The proposed method is evaluated on the publicly available brain MRI datasets: Mindboggle101 and LPBA40. Experimental results demonstrate our method outperforms several state-of-the-art methods for the metric of Dice Score. The mean number of folding voxels and registration time are comparable to state-of-the-art methods.Significance.This study shows that Deep Residual-SVD Network can improve registration accuracy. This study also demonstrate that the residual unit can enhance the learning ability of the network, the SVD denoising layer can denoise effectively, and the ELU is more robust to noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助单纯的柚子采纳,获得10
1秒前
linlin发布了新的文献求助10
1秒前
1秒前
zsreed关注了科研通微信公众号
1秒前
fyukgfdyifotrf完成签到,获得积分10
1秒前
2秒前
2秒前
满意妙梦发布了新的文献求助10
3秒前
CodeCraft应助PubMed556采纳,获得10
3秒前
sun完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
研友_VZG7GZ应助dpp采纳,获得10
5秒前
bonnie发布了新的文献求助10
5秒前
6秒前
pingli完成签到 ,获得积分10
6秒前
7秒前
YTT发布了新的文献求助10
7秒前
呓语发布了新的文献求助10
8秒前
无花果应助易今采纳,获得10
8秒前
田乐天发布了新的文献求助10
8秒前
8秒前
zhaoyi完成签到,获得积分20
8秒前
科研通AI6应助跳跃的访琴采纳,获得10
9秒前
Wind应助单薄的咖啡采纳,获得10
9秒前
甜橘发布了新的文献求助10
10秒前
10秒前
花灯发布了新的文献求助10
10秒前
10秒前
王吉萍完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小马甲应助yuanyuan采纳,获得10
11秒前
Jasper应助陈哈哈采纳,获得10
11秒前
12秒前
Ricarvi9完成签到,获得积分10
13秒前
小白兔发布了新的文献求助10
13秒前
13秒前
14秒前
James应助ceeray23采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764