2D–3D Cascade Network for Glioma Segmentation in Multisequence MRI Images Using Multiscale Information

计算机科学 分割 人工智能 背景(考古学) 级联 特征(语言学) 模式识别(心理学) 编码器 连接组学
作者
Jianyun Cao,Haoran Lai,Jiawei Zhang,Junde Zhang,Tao Xie,Heqing Wang,Junguo Bu,Qianjin Feng,Meiyan Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 106894-106894
标识
DOI:10.1016/j.cmpb.2022.106894
摘要

• A 2D–3D cascade network with multi-scale information is proposed for glioma segmentation. • A multi-task learning-based 2D network is applied to exploit intra-slice features. • A 3D DenseUNet is integrated with the 2D network to extract inter-slice features. • A multi-scale information module is used in 2D and 3D networks to capture glioma details. • Competitive performance is achieved on public available and clinical datasets. Glioma segmentation is an important procedure for the treatment plan and follow-up evaluation of patients with glioma. UNet-based networks are widely used in medical image segmentation tasks and have achieved state-of-the-art performance. However, context information along the third dimension is ignored in 2D convolutions, whereas difference between z -axis and in-plane resolutions is large in 3D convolutions. Moreover, an original UNet structure cannot capture fine details because of the reduced resolution of feature maps near bottleneck layers. To address these issues, a novel 2D–3D cascade network with multiscale information module is proposed for the multiclass segmentation of gliomas in multisequence MRI images. First, a 2D network is applied to fully exploit potential intra-slice features. A variational autoencoder module is incorporated into 2D DenseUNet to regularize a shared encoder, extract useful information, and represent glioma heterogeneity. Second, we integrated 3D DenseUNet with the 2D network in cascade mode to extract useful inter-slice features and alleviate the influence of large difference between z -axis and in-plane resolutions. Moreover, a multiscale information module is used in the 2D and 3D networks to further capture the fine details of gliomas. Finally, the whole 2D–3D cascade network is trained in an end-to-end manner, where the intra-slice and inter-slice features are fused and optimized jointly to take full advantage of 3D image information. Our method is evaluated on publicly available and clinical datasets and achieves competitive performance in these two datasets. These results indicate that the proposed method may be a useful tool for glioma segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
刚刚
李志平完成签到 ,获得积分10
刚刚
小马甲应助能干的邹采纳,获得10
1秒前
1秒前
刘坦苇发布了新的文献求助10
2秒前
毛毛完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
wykion完成签到,获得积分10
7秒前
hoshi完成签到 ,获得积分10
8秒前
8秒前
Roey完成签到,获得积分20
9秒前
刘坦苇发布了新的文献求助10
9秒前
9秒前
鲜于夜白发布了新的文献求助10
9秒前
11秒前
哈呵嚯嘿呀完成签到,获得积分10
11秒前
ding应助潦草采纳,获得10
12秒前
12秒前
wanci应助刘坦苇采纳,获得10
13秒前
13秒前
乐观紫发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
15秒前
wrb完成签到,获得积分20
15秒前
17秒前
LM发布了新的文献求助10
17秒前
劲秉应助jy采纳,获得30
18秒前
19秒前
19秒前
影响发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
Return给宋一c的求助进行了留言
22秒前
Lee完成签到,获得积分20
23秒前
24秒前
刘坦苇发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459542
求助须知:如何正确求助?哪些是违规求助? 3053895
关于积分的说明 9039379
捐赠科研通 2743266
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685