2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information

计算机科学 分割 人工智能 背景(考古学) 级联 特征(语言学) 模式识别(心理学) 编码器 古生物学 语言学 化学 哲学 色谱法 生物 操作系统
作者
Jianyun Cao,Haoran Lai,Jiawei Zhang,Junde Zhang,Tao Xie,Heqing Wang,Junguo Bu,Qianjin Feng,Meiyan Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106894-106894 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106894
摘要

• A 2D–3D cascade network with multi-scale information is proposed for glioma segmentation. • A multi-task learning-based 2D network is applied to exploit intra-slice features. • A 3D DenseUNet is integrated with the 2D network to extract inter-slice features. • A multi-scale information module is used in 2D and 3D networks to capture glioma details. • Competitive performance is achieved on public available and clinical datasets. Glioma segmentation is an important procedure for the treatment plan and follow-up evaluation of patients with glioma. UNet-based networks are widely used in medical image segmentation tasks and have achieved state-of-the-art performance. However, context information along the third dimension is ignored in 2D convolutions, whereas difference between z -axis and in-plane resolutions is large in 3D convolutions. Moreover, an original UNet structure cannot capture fine details because of the reduced resolution of feature maps near bottleneck layers. To address these issues, a novel 2D–3D cascade network with multiscale information module is proposed for the multiclass segmentation of gliomas in multisequence MRI images. First, a 2D network is applied to fully exploit potential intra-slice features. A variational autoencoder module is incorporated into 2D DenseUNet to regularize a shared encoder, extract useful information, and represent glioma heterogeneity. Second, we integrated 3D DenseUNet with the 2D network in cascade mode to extract useful inter-slice features and alleviate the influence of large difference between z -axis and in-plane resolutions. Moreover, a multiscale information module is used in the 2D and 3D networks to further capture the fine details of gliomas. Finally, the whole 2D–3D cascade network is trained in an end-to-end manner, where the intra-slice and inter-slice features are fused and optimized jointly to take full advantage of 3D image information. Our method is evaluated on publicly available and clinical datasets and achieves competitive performance in these two datasets. These results indicate that the proposed method may be a useful tool for glioma segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LYB1a吕完成签到,获得积分10
1秒前
2秒前
肖婷婷完成签到,获得积分10
3秒前
4秒前
5秒前
椰子完成签到,获得积分10
5秒前
肖婷婷发布了新的文献求助10
6秒前
领导范儿应助Lisa采纳,获得10
9秒前
单薄的誉发布了新的文献求助10
9秒前
10秒前
8R60d8应助zq吃芒果采纳,获得10
10秒前
Grace完成签到,获得积分10
11秒前
图图关注了科研通微信公众号
12秒前
璨澄发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
16秒前
爱吃香菜发布了新的文献求助10
16秒前
17秒前
任性访风完成签到,获得积分10
20秒前
安陌煜完成签到,获得积分10
21秒前
21秒前
21秒前
平常的刺猬完成签到 ,获得积分10
24秒前
24秒前
lulu1234发布了新的文献求助10
25秒前
发酱应助淡定采文采纳,获得10
26秒前
hugo发布了新的文献求助10
26秒前
孤独的无血完成签到,获得积分10
26秒前
研友_VZG7GZ应助哈哈哈采纳,获得10
27秒前
27秒前
大模型应助THEEVE采纳,获得10
28秒前
29秒前
30秒前
orixero应助研友_green采纳,获得10
31秒前
半城微凉应助Lili采纳,获得10
31秒前
张涛完成签到,获得积分10
33秒前
活力的以寒完成签到 ,获得积分10
34秒前
34秒前
风趣的靖雁完成签到 ,获得积分10
36秒前
图图发布了新的文献求助10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382