已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information

计算机科学 分割 人工智能 背景(考古学) 级联 特征(语言学) 模式识别(心理学) 编码器 古生物学 语言学 化学 哲学 色谱法 生物 操作系统
作者
Jianyun Cao,Haoran Lai,Jiawei Zhang,Junde Zhang,Tao Xie,Heqing Wang,Junguo Bu,Qianjin Feng,Meiyan Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106894-106894 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106894
摘要

• A 2D–3D cascade network with multi-scale information is proposed for glioma segmentation. • A multi-task learning-based 2D network is applied to exploit intra-slice features. • A 3D DenseUNet is integrated with the 2D network to extract inter-slice features. • A multi-scale information module is used in 2D and 3D networks to capture glioma details. • Competitive performance is achieved on public available and clinical datasets. Glioma segmentation is an important procedure for the treatment plan and follow-up evaluation of patients with glioma. UNet-based networks are widely used in medical image segmentation tasks and have achieved state-of-the-art performance. However, context information along the third dimension is ignored in 2D convolutions, whereas difference between z -axis and in-plane resolutions is large in 3D convolutions. Moreover, an original UNet structure cannot capture fine details because of the reduced resolution of feature maps near bottleneck layers. To address these issues, a novel 2D–3D cascade network with multiscale information module is proposed for the multiclass segmentation of gliomas in multisequence MRI images. First, a 2D network is applied to fully exploit potential intra-slice features. A variational autoencoder module is incorporated into 2D DenseUNet to regularize a shared encoder, extract useful information, and represent glioma heterogeneity. Second, we integrated 3D DenseUNet with the 2D network in cascade mode to extract useful inter-slice features and alleviate the influence of large difference between z -axis and in-plane resolutions. Moreover, a multiscale information module is used in the 2D and 3D networks to further capture the fine details of gliomas. Finally, the whole 2D–3D cascade network is trained in an end-to-end manner, where the intra-slice and inter-slice features are fused and optimized jointly to take full advantage of 3D image information. Our method is evaluated on publicly available and clinical datasets and achieves competitive performance in these two datasets. These results indicate that the proposed method may be a useful tool for glioma segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槿浅完成签到 ,获得积分10
4秒前
热情的天蓝完成签到,获得积分10
7秒前
z123完成签到,获得积分10
9秒前
科研通AI5应助gaominghe采纳,获得10
10秒前
Bystander完成签到 ,获得积分10
16秒前
16秒前
20秒前
gaominghe发布了新的文献求助10
21秒前
xx发布了新的文献求助10
24秒前
djnjv完成签到 ,获得积分10
26秒前
十一发布了新的文献求助30
27秒前
魁梧的冷之完成签到 ,获得积分20
30秒前
highestant完成签到,获得积分20
32秒前
orixero应助xx采纳,获得10
33秒前
34秒前
谦让傲菡完成签到 ,获得积分10
35秒前
陶醉元冬完成签到,获得积分10
40秒前
40秒前
xx完成签到,获得积分20
41秒前
领导范儿应助kingcoming采纳,获得10
42秒前
42秒前
酆百招csa发布了新的文献求助20
45秒前
童年的回忆klwqqt完成签到,获得积分10
46秒前
Orange应助Siriluck采纳,获得10
48秒前
49秒前
kane发布了新的文献求助10
49秒前
万能图书馆应助77采纳,获得10
49秒前
可靠的雪青完成签到 ,获得积分10
50秒前
lixia完成签到 ,获得积分10
50秒前
54秒前
55秒前
59秒前
kingcoming发布了新的文献求助10
1分钟前
逍遥醉完成签到,获得积分10
1分钟前
Siriluck发布了新的文献求助10
1分钟前
金阿垚在科研应助kane采纳,获得10
1分钟前
一一一完成签到,获得积分10
1分钟前
kingcoming完成签到,获得积分10
1分钟前
CCsouljump完成签到 ,获得积分10
1分钟前
逍遥醉发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736561
求助须知:如何正确求助?哪些是违规求助? 3280413
关于积分的说明 10019733
捐赠科研通 2997094
什么是DOI,文献DOI怎么找? 1644407
邀请新用户注册赠送积分活动 781973
科研通“疑难数据库(出版商)”最低求助积分说明 749641