Cu Nanoparticle-Decorated Boron–Carbon–Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol

材料科学 X射线光电子能谱 扫描电子显微镜 介电谱 分析化学(期刊) 循环伏安法 检出限 纳米颗粒 电化学 电极 核化学 化学工程 纳米技术 化学 色谱法 复合材料 物理化学 工程类
作者
Yan Peng,Meng Li,Xiuxiu Jia,Jianru Su,Xue Zhao,Shusheng Zhang,Haibo Zhang,Xiaohai Zhou,Jianbing Chen,Yimin Huang,Thomas Wågberg,Guangzhi Hu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (25): 28956-28964 被引量:25
标识
DOI:10.1021/acsami.2c06729
摘要

In the present work, irregular Cu nanoparticle-decorated boron-carbon-nitrogen (Cu-BCN) nanosheets were successfully synthesized. A Cu-BCN dispersion was deposited on a bare glassy carbon electrode (GCE) to prepare an electrochemical sensor (Cu-BCN/GCE) for the detection of chloramphenicol (CAP) in the environment. Cu-BCN was characterized using high-resolution scanning transmission electron microscopy (HRSTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The performance of the Cu-BCN/GCE was studied using electrochemical impedance spectroscopy (EIS), and its advantages were proven by electrode comparison. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions, including the amount of Cu-BCN deposited, enrichment potential, deposition time, and pH of the electrolyte. A linear relationship between the CAP concentration and current response was obtained under the optimized experimental conditions, with a wide linear range and a limit of detection (LOD) of 2.41 nmol/L. Cu-BCN/GCE exhibited high stability, reproducibility, and repeatability. In the presence of various organic and inorganic species, the influence of the Cu-BCN-based sensor on the current response of CAP was less than 5%. Notably, the prepared sensor exhibited excellent performance in real-water samples, with satisfactory recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Intro采纳,获得10
1秒前
SciGPT应助cat采纳,获得10
1秒前
Minkslion发布了新的文献求助10
1秒前
2秒前
酷波er应助细腻的麦片采纳,获得10
3秒前
lurenjia009完成签到,获得积分10
4秒前
4秒前
科研通AI5应助huangyi采纳,获得10
5秒前
yxy完成签到,获得积分10
5秒前
Orange应助yam001采纳,获得30
5秒前
5秒前
竹斟酒完成签到,获得积分10
6秒前
6秒前
6秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
6秒前
6秒前
6秒前
深情安青应助美女采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
葛辉辉完成签到,获得积分10
8秒前
kangkang发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
SciGPT应助ye采纳,获得10
10秒前
乐乐应助自信晟睿采纳,获得10
10秒前
葛辉辉发布了新的文献求助10
10秒前
11秒前
Wxd0211完成签到,获得积分20
11秒前
nemo完成签到,获得积分10
12秒前
小橙子发布了新的文献求助10
12秒前
lxh2424发布了新的文献求助30
12秒前
万能图书馆应助YHL采纳,获得10
12秒前
请叫我风吹麦浪应助hu970采纳,获得10
12秒前
传统的慕儿完成签到,获得积分10
13秒前
aurora完成签到 ,获得积分10
13秒前
13秒前
领导范儿应助gyt采纳,获得10
15秒前
麦麦发布了新的文献求助10
15秒前
晴天完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762