材料科学
X射线光电子能谱
扫描电子显微镜
介电谱
分析化学(期刊)
循环伏安法
检出限
纳米颗粒
电化学
电极
核化学
化学工程
纳米技术
化学
色谱法
复合材料
物理化学
工程类
作者
Yan Peng,Meng Li,Xiuxiu Jia,Jianru Su,Xue Zhao,Shusheng Zhang,Haibo Zhang,Xiaohai Zhou,Jianbing Chen,Yimin Huang,Thomas Wågberg,Guangzhi Hu
标识
DOI:10.1021/acsami.2c06729
摘要
In the present work, irregular Cu nanoparticle-decorated boron-carbon-nitrogen (Cu-BCN) nanosheets were successfully synthesized. A Cu-BCN dispersion was deposited on a bare glassy carbon electrode (GCE) to prepare an electrochemical sensor (Cu-BCN/GCE) for the detection of chloramphenicol (CAP) in the environment. Cu-BCN was characterized using high-resolution scanning transmission electron microscopy (HRSTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The performance of the Cu-BCN/GCE was studied using electrochemical impedance spectroscopy (EIS), and its advantages were proven by electrode comparison. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions, including the amount of Cu-BCN deposited, enrichment potential, deposition time, and pH of the electrolyte. A linear relationship between the CAP concentration and current response was obtained under the optimized experimental conditions, with a wide linear range and a limit of detection (LOD) of 2.41 nmol/L. Cu-BCN/GCE exhibited high stability, reproducibility, and repeatability. In the presence of various organic and inorganic species, the influence of the Cu-BCN-based sensor on the current response of CAP was less than 5%. Notably, the prepared sensor exhibited excellent performance in real-water samples, with satisfactory recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI