Defect-control electron transport behavior of gallium nitride/silicon nonplanar-structure heterojunction

异质结 材料科学 光电子学 氮化镓 退火(玻璃) 光致发光 纳米技术 复合材料 冶金 图层(电子)
作者
Yan Zhang,Hang-Hui Jiang,Yuan-Hang Luo,Meng-Zhen Xiao,Chao Wen,Ya-Kun Xing,Xinjian Li
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:55 (36): 364003-364003 被引量:3
标识
DOI:10.1088/1361-6463/ac78a2
摘要

Abstract Compared with a traditional heterojunction, a nonplanar-structure heterojunction can reduce the problems caused by a lattice mismatch through a three-dimensional stress release mechanism, which will be helpful for promoting the performance and stability of related devices. In this paper, we report our study on the electron transport behavior of a gallium nitride (GaN)/silicon (Si) heterojunction with nonplanar-structure interface, which was prepared through growing GaN on a hierarchical structure, Si nanoporous pillar array (Si-NPA). To clarify the electron transport mechanism and promote the device performance, annealing treatment in ammonia atmosphere was carried out to as-prepared GaN/Si-NPA. The formation of the heterojunction was verified by the typical rectification behavior observed in both as-prepared and annealed samples. After annealing treatment, a lower turn-on voltage, a smaller reverse saturation current density, a larger forward current density and a higher reverse breakdown voltage were obtained, which indicate the promotion of the heterojunction performance. By comparatively studying the spectrum evolution of photoluminescence before and after annealing treatment, the underlying mechanism is clarified as the variation of the type and density of point defects such as gallium vacancy ( V Ga ), oxygen substitutional impurity (O N ), and their complex defect V Ga −O N in GaN. The results illustrate an effective defect-control strategy for optimizing the performance of GaN/Si heterojunction optoelectronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成永福发布了新的文献求助10
刚刚
Cyber_relic发布了新的文献求助10
刚刚
sinlar完成签到,获得积分10
刚刚
1秒前
zwj完成签到,获得积分10
1秒前
1秒前
1秒前
haoooooooooooooo完成签到,获得积分10
2秒前
呵呵完成签到,获得积分10
2秒前
2秒前
神勇马里奥完成签到 ,获得积分10
2秒前
哈哈哈哈哈完成签到,获得积分10
3秒前
背后皮卡丘完成签到 ,获得积分10
3秒前
3秒前
bkagyin应助轻松采纳,获得10
3秒前
CodeCraft应助taotie采纳,获得10
4秒前
我爱科研完成签到,获得积分10
4秒前
4秒前
5秒前
sci大户发布了新的文献求助10
5秒前
Doogie发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
LYB吕发布了新的文献求助10
6秒前
7秒前
RB发布了新的文献求助10
7秒前
乐乐应助lalala采纳,获得10
7秒前
8秒前
今天也要开心Y完成签到,获得积分10
8秒前
8秒前
Cassie发布了新的文献求助10
8秒前
asda发布了新的文献求助10
9秒前
王则华完成签到,获得积分10
10秒前
zyy发布了新的文献求助10
10秒前
10秒前
如意厉完成签到,获得积分10
11秒前
11秒前
大个应助魏映霞采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809