Enhanced dictionary learning based sparse classification approach with applications to planetary bearing fault diagnosis

计算机科学 人工智能 稀疏逼近 模式识别(心理学) 稳健性(进化) 断层(地质) 方位(导航) 机器学习 生物化学 基因 地质学 地震学 化学
作者
Yun Kong,Zhaoye Qin,Qinkai Han,Tianyang Wang,Fulei Chu
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:196: 108870-108870 被引量:13
标识
DOI:10.1016/j.apacoust.2022.108870
摘要

To date, planetary bearings remain challenging for machinery fault diagnosis because of their intricate kinematics, time-variant modulations, and strong interferences. To address this challenge, this study presents an enhanced dictionary learning based sparse classification (EDL-SC) approach to diagnose planetary bearings. Our main novelty lies in that the data augmentation and dictionary learning strategies are incorporated into our proposed EDL-SC approach, which can significantly enhance the representation ability and recognition ability for the sparse classification-based intelligent diagnosis criterion. Firstly, vibration data augmentation is implemented with an overlapping segmentation strategy to enhance the quality of training samples. Secondly, data-driven dictionary design is achieved by means of dictionary learning, which learns sub-dictionaries and adaptively designs the whole dictionary through considering both the inter-class and intra-class features. Thirdly, a sparse classification strategy is established for intelligent diagnostics by the aid of a discrimination criterion of minimal reconstruction errors. The feasibility and advantage of EDL-SC have been thoroughly evaluated with a challenging planetary bearing dataset. Experiment verification results of planetary bearing fault diagnosis indicate that EDL-SC obtains a superior diagnosis accuracy of 99.63%, strong robustness to noises, and competitive computation efficiency over advanced deep learning and sparse representation classification methods. This work can bring new insights for the application of sparse representation theory from the perspective of pattern recognition, and shows great potentials of EDL-SC for data-driven machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝴蝶变成毛毛虫完成签到,获得积分10
2秒前
可爱的菠萝完成签到,获得积分10
3秒前
在水一方应助LYY采纳,获得10
3秒前
魏煜佳发布了新的文献求助10
6秒前
6秒前
甘博完成签到,获得积分10
8秒前
麦乐迪应助许子健采纳,获得10
10秒前
10秒前
黎大谱发布了新的文献求助10
11秒前
认真的白开水完成签到,获得积分10
11秒前
12秒前
12秒前
三更完成签到 ,获得积分10
13秒前
lxlcx发布了新的文献求助10
14秒前
wp完成签到,获得积分10
14秒前
顾矜应助一直采纳,获得10
14秒前
冷静的奇迹完成签到,获得积分10
15秒前
嘟嘟嘟嘟完成签到 ,获得积分10
16秒前
帆帆发布了新的文献求助10
17秒前
18秒前
魏煜佳完成签到,获得积分10
19秒前
fang发布了新的文献求助20
19秒前
20秒前
汉堡包应助BareBear采纳,获得10
20秒前
24秒前
freeQQ完成签到,获得积分10
25秒前
Journey完成签到,获得积分10
26秒前
Tough完成签到 ,获得积分10
26秒前
会撒娇的凝琴完成签到,获得积分10
27秒前
29秒前
30秒前
嘻嘻哈哈发布了新的文献求助10
31秒前
jiwn发布了新的文献求助10
31秒前
念姬发布了新的文献求助10
32秒前
33秒前
33秒前
芽芽豆完成签到 ,获得积分10
33秒前
34秒前
Owen应助lyzhou采纳,获得10
35秒前
嘻嘻哈哈完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403