Enhanced dictionary learning based sparse classification approach with applications to planetary bearing fault diagnosis

计算机科学 人工智能 稀疏逼近 模式识别(心理学) 稳健性(进化) 断层(地质) 方位(导航) 机器学习 生物化学 基因 地质学 地震学 化学
作者
Yun Kong,Zhaoye Qin,Qinkai Han,Tianyang Wang,Fulei Chu
出处
期刊:Applied Acoustics [Elsevier]
卷期号:196: 108870-108870 被引量:13
标识
DOI:10.1016/j.apacoust.2022.108870
摘要

To date, planetary bearings remain challenging for machinery fault diagnosis because of their intricate kinematics, time-variant modulations, and strong interferences. To address this challenge, this study presents an enhanced dictionary learning based sparse classification (EDL-SC) approach to diagnose planetary bearings. Our main novelty lies in that the data augmentation and dictionary learning strategies are incorporated into our proposed EDL-SC approach, which can significantly enhance the representation ability and recognition ability for the sparse classification-based intelligent diagnosis criterion. Firstly, vibration data augmentation is implemented with an overlapping segmentation strategy to enhance the quality of training samples. Secondly, data-driven dictionary design is achieved by means of dictionary learning, which learns sub-dictionaries and adaptively designs the whole dictionary through considering both the inter-class and intra-class features. Thirdly, a sparse classification strategy is established for intelligent diagnostics by the aid of a discrimination criterion of minimal reconstruction errors. The feasibility and advantage of EDL-SC have been thoroughly evaluated with a challenging planetary bearing dataset. Experiment verification results of planetary bearing fault diagnosis indicate that EDL-SC obtains a superior diagnosis accuracy of 99.63%, strong robustness to noises, and competitive computation efficiency over advanced deep learning and sparse representation classification methods. This work can bring new insights for the application of sparse representation theory from the perspective of pattern recognition, and shows great potentials of EDL-SC for data-driven machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卢千愁发布了新的文献求助10
1秒前
1秒前
思源应助bmx采纳,获得10
2秒前
脑洞疼应助年轻思山采纳,获得10
3秒前
不敢自称科研人完成签到,获得积分10
3秒前
Jasper应助震动的剑通采纳,获得10
4秒前
小火锅完成签到,获得积分10
4秒前
zg完成签到,获得积分10
5秒前
Brain发布了新的文献求助10
5秒前
6秒前
香菜完成签到 ,获得积分10
8秒前
8秒前
Shelley发布了新的文献求助10
8秒前
久晴完成签到,获得积分10
9秒前
JamesPei应助12采纳,获得10
10秒前
隐形曼青应助小小莫采纳,获得10
10秒前
Knight完成签到,获得积分10
10秒前
今后应助小火锅采纳,获得10
11秒前
一一完成签到,获得积分10
11秒前
大佬发布了新的文献求助10
12秒前
yuyu给yuyu的求助进行了留言
13秒前
Brain完成签到,获得积分10
15秒前
万能图书馆应助缪伟采纳,获得10
17秒前
lybin完成签到,获得积分10
18秒前
21秒前
FF完成签到 ,获得积分10
22秒前
23秒前
段章完成签到 ,获得积分10
24秒前
25秒前
25秒前
26秒前
高沅发布了新的文献求助10
27秒前
infer1024完成签到 ,获得积分10
27秒前
中国居里完成签到 ,获得积分10
29秒前
Mira完成签到,获得积分10
31秒前
Ava应助爱听歌凤灵采纳,获得10
33秒前
王弘化应助lybin采纳,获得10
34秒前
luster完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724