Enhanced dictionary learning based sparse classification approach with applications to planetary bearing fault diagnosis

计算机科学 人工智能 稀疏逼近 模式识别(心理学) 稳健性(进化) 断层(地质) 方位(导航) 机器学习 生物化学 基因 地质学 地震学 化学
作者
Yun Kong,Zhaoye Qin,Qinkai Han,Tianyang Wang,Fulei Chu
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:196: 108870-108870 被引量:13
标识
DOI:10.1016/j.apacoust.2022.108870
摘要

To date, planetary bearings remain challenging for machinery fault diagnosis because of their intricate kinematics, time-variant modulations, and strong interferences. To address this challenge, this study presents an enhanced dictionary learning based sparse classification (EDL-SC) approach to diagnose planetary bearings. Our main novelty lies in that the data augmentation and dictionary learning strategies are incorporated into our proposed EDL-SC approach, which can significantly enhance the representation ability and recognition ability for the sparse classification-based intelligent diagnosis criterion. Firstly, vibration data augmentation is implemented with an overlapping segmentation strategy to enhance the quality of training samples. Secondly, data-driven dictionary design is achieved by means of dictionary learning, which learns sub-dictionaries and adaptively designs the whole dictionary through considering both the inter-class and intra-class features. Thirdly, a sparse classification strategy is established for intelligent diagnostics by the aid of a discrimination criterion of minimal reconstruction errors. The feasibility and advantage of EDL-SC have been thoroughly evaluated with a challenging planetary bearing dataset. Experiment verification results of planetary bearing fault diagnosis indicate that EDL-SC obtains a superior diagnosis accuracy of 99.63%, strong robustness to noises, and competitive computation efficiency over advanced deep learning and sparse representation classification methods. This work can bring new insights for the application of sparse representation theory from the perspective of pattern recognition, and shows great potentials of EDL-SC for data-driven machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉水绿发布了新的文献求助10
刚刚
雨寒完成签到,获得积分10
1秒前
xixi发布了新的文献求助10
1秒前
赵科翊完成签到,获得积分10
1秒前
Breathe完成签到 ,获得积分10
2秒前
Jessie完成签到,获得积分10
2秒前
liucheng发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
HI发布了新的文献求助10
4秒前
4秒前
qianqina完成签到,获得积分10
4秒前
好好好完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
乔乔完成签到,获得积分10
5秒前
5秒前
在水一方应助一群牛采纳,获得10
6秒前
6秒前
shiqiang mu应助雨寒采纳,获得10
6秒前
7秒前
未知发布了新的文献求助10
7秒前
7秒前
高媛完成签到,获得积分20
8秒前
yelaikuhun74发布了新的文献求助10
8秒前
蒋一发布了新的文献求助10
9秒前
qianqina发布了新的文献求助10
9秒前
9秒前
qise应助管夜白采纳,获得10
9秒前
乔呀完成签到,获得积分10
9秒前
xixi完成签到,获得积分20
10秒前
10秒前
Vivian完成签到,获得积分10
10秒前
10秒前
班玮越发布了新的文献求助10
10秒前
要增肥的樱完成签到,获得积分10
11秒前
科研通AI5应助雨碎寒江采纳,获得10
11秒前
liucheng完成签到,获得积分10
11秒前
12秒前
FashionBoy应助寒月如雪采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403