清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhanced dictionary learning based sparse classification approach with applications to planetary bearing fault diagnosis

计算机科学 人工智能 稀疏逼近 模式识别(心理学) 稳健性(进化) 断层(地质) 方位(导航) 机器学习 生物化学 基因 地质学 地震学 化学
作者
Yun Kong,Zhaoye Qin,Qinkai Han,Tianyang Wang,Fulei Chu
出处
期刊:Applied Acoustics [Elsevier]
卷期号:196: 108870-108870 被引量:13
标识
DOI:10.1016/j.apacoust.2022.108870
摘要

To date, planetary bearings remain challenging for machinery fault diagnosis because of their intricate kinematics, time-variant modulations, and strong interferences. To address this challenge, this study presents an enhanced dictionary learning based sparse classification (EDL-SC) approach to diagnose planetary bearings. Our main novelty lies in that the data augmentation and dictionary learning strategies are incorporated into our proposed EDL-SC approach, which can significantly enhance the representation ability and recognition ability for the sparse classification-based intelligent diagnosis criterion. Firstly, vibration data augmentation is implemented with an overlapping segmentation strategy to enhance the quality of training samples. Secondly, data-driven dictionary design is achieved by means of dictionary learning, which learns sub-dictionaries and adaptively designs the whole dictionary through considering both the inter-class and intra-class features. Thirdly, a sparse classification strategy is established for intelligent diagnostics by the aid of a discrimination criterion of minimal reconstruction errors. The feasibility and advantage of EDL-SC have been thoroughly evaluated with a challenging planetary bearing dataset. Experiment verification results of planetary bearing fault diagnosis indicate that EDL-SC obtains a superior diagnosis accuracy of 99.63%, strong robustness to noises, and competitive computation efficiency over advanced deep learning and sparse representation classification methods. This work can bring new insights for the application of sparse representation theory from the perspective of pattern recognition, and shows great potentials of EDL-SC for data-driven machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
19秒前
ax发布了新的文献求助30
24秒前
CHEN完成签到 ,获得积分10
28秒前
ljm完成签到 ,获得积分10
52秒前
没时间解释了完成签到 ,获得积分10
1分钟前
研友_Lw4Ngn发布了新的文献求助10
1分钟前
研友_Lw4Ngn完成签到,获得积分10
1分钟前
happyxuexi完成签到,获得积分10
1分钟前
点点完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
大个应助科研通管家采纳,获得80
2分钟前
2分钟前
ax完成签到,获得积分20
2分钟前
大模型应助ax采纳,获得10
2分钟前
非洲大象完成签到,获得积分10
3分钟前
Hello应助yf采纳,获得10
5分钟前
6分钟前
6分钟前
无花果应助科研通管家采纳,获得10
6分钟前
6分钟前
浮游应助Double采纳,获得10
6分钟前
自由山槐完成签到,获得积分10
8分钟前
8分钟前
9527完成签到,获得积分10
8分钟前
8分钟前
yf发布了新的文献求助10
8分钟前
8分钟前
科研通AI2S应助Gryphon采纳,获得10
8分钟前
9分钟前
善学以致用应助yf采纳,获得10
9分钟前
9分钟前
Gryphon发布了新的文献求助10
9分钟前
Gryphon完成签到,获得积分10
9分钟前
xiaozou55完成签到 ,获得积分10
10分钟前
这橘不甜发布了新的文献求助10
10分钟前
愉快的丹彤完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346822
求助须知:如何正确求助?哪些是违规求助? 4481209
关于积分的说明 13947438
捐赠科研通 4379235
什么是DOI,文献DOI怎么找? 2406250
邀请新用户注册赠送积分活动 1398834
关于科研通互助平台的介绍 1371717