已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism

计算机科学 人工智能 机制(生物学) 图形 理论计算机科学 物理 量子力学
作者
Jiahui Yu,Jike Wang,Hong Zhao,Junbo Gao,Yu Kang,Dongsheng Cao,Zhe Wang,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (12): 2973-2986 被引量:28
标识
DOI:10.1021/acs.jcim.2c00038
摘要

Accurate estimation of the synthetic accessibility of small molecules is needed in many phases of drug discovery. Several expert-crafted scoring methods and descriptor-based quantitative structure–activity relationship (QSAR) models have been developed for synthetic accessibility assessment, but their practical applications in drug discovery are still quite limited because of relatively low prediction accuracy and poor model interpretability. In this study, we proposed a data-driven interpretable prediction framework called GASA (Graph Attention-based assessment of Synthetic Accessibility) to evaluate the synthetic accessibility of small molecules by distinguishing compounds to be easy- (ES) or hard-to-synthesize (HS). GASA is a graph neural network (GNN) architecture that makes self-feature deduction by applying an attention mechanism to automatically capture the most important structural features related to synthetic accessibility. The sampling around the hypothetical classification boundary was used to improve the ability of GASA to distinguish structurally similar molecules. GASA was extensively evaluated and compared with two descriptor-based machine learning methods (random forest, RF; eXtreme gradient boosting, XGBoost) and four existing scores (SYBA: SYnthetic Bayesian Accessibility; SCScore: Synthetic Complexity score; RAscore: Retrosynthetic Accessibility score; SAscore: Synthetic Accessibility score). Our analysis demonstrates that GASA achieved remarkable performance in distinguishing similar molecules compared with other methods and had a broader applicability domain. In addition, we show how GASA learns the important features that affect molecular synthetic accessibility by assigning attention weights to different atoms. An online prediction service for GASA was offered at http://cadd.zju.edu.cn/gasa/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
如意小海豚关注了科研通微信公众号
1秒前
科研通AI2S应助敢敢采纳,获得10
1秒前
学渣本渣发布了新的文献求助10
3秒前
脑洞疼应助白青采纳,获得10
5秒前
七月流火应助Liam采纳,获得30
6秒前
乐乐完成签到 ,获得积分10
6秒前
7秒前
123456发布了新的文献求助10
7秒前
嗯哼应助研友_ZegWmL采纳,获得10
7秒前
顾矜应助研友_ZegWmL采纳,获得10
7秒前
兰亭序完成签到,获得积分10
8秒前
田様应助不安的从霜采纳,获得10
12秒前
16秒前
Jasper应助袁宁蔓采纳,获得10
16秒前
炙热的慕山完成签到,获得积分10
18秒前
亚米完成签到,获得积分10
20秒前
NexusExplorer应助YC采纳,获得30
20秒前
轻松的曼岚关注了科研通微信公众号
20秒前
leclerc发布了新的文献求助10
21秒前
默默的巧荷完成签到,获得积分10
22秒前
23秒前
酷波er应助wateriness采纳,获得10
26秒前
马华化完成签到,获得积分0
26秒前
lulu完成签到 ,获得积分10
27秒前
ruiminliu发布了新的文献求助10
31秒前
33秒前
dique3hao完成签到 ,获得积分10
34秒前
在水一方应助科研通管家采纳,获得10
34秒前
打打应助科研通管家采纳,获得10
34秒前
852应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
35秒前
不配.应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
852应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891915
关于积分的说明 8269223
捐赠科研通 2559929
什么是DOI,文献DOI怎么找? 1388807
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798