已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

idse-HE: Hybrid embedding graph neural network for drug side effects prediction

计算机科学 人工神经网络 嵌入 药品 图形 人工智能 理论计算机科学 机器学习 医学 药理学
作者
Liyi Yu,Meiling Cheng,Wang‐Ren Qiu,Xuan Xiao,Wei‐Zhong Lin
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:131: 104098-104098 被引量:23
标识
DOI:10.1016/j.jbi.2022.104098
摘要

In drug development, unexpected side effects are the main reason for the failure of candidate drug trials. Discovering potential side effects of drugs in silico can improve the success rate of drug screening. However, most previous works extracted and utilized an effective representation of drugs from a single perspective. These methods merely considered the topological information of drug in the biological entity network, or combined the association information (e.g. knowledge graph KG) between drug and other biomarkers, or only used the chemical structure or sequence information of drug. Consequently, to jointly learn drug features from both the macroscopic biological network and the microscopic drug molecules. We propose a hybrid embedding graph neural network model named idse-HE, which integrates graph embedding module and node embedding module. idse-HE can fuse the drug chemical structure information, the drug substructure sequence information and the drug network topology information. Our model deems the final representation of drugs and side effects as two implicit factors to reconstruct the original matrix and predicts the potential side effects of drugs. In the robustness experiment, idse-HE shows stable performance in all indicators. We reproduce the baselines under the same conditions, and the experimental results indicate that idse-HE is superior to other advanced methods. Finally, we also collect evidence to confirm several real drug side effect pairs in the predicted results, which were previously regarded as negative samples. More detailed information, scientific researchers can access the user-friendly web-server of idse-HE at http://bioinfo.jcu.edu.cn/idse-HE. In this server, users can obtain the original data and source code, and will be guided to reproduce the model results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aliks完成签到,获得积分10
2秒前
科研通AI2S应助rylynn采纳,获得10
3秒前
积极马里奥完成签到 ,获得积分10
5秒前
ppg123应助Finncik采纳,获得30
5秒前
一二完成签到,获得积分0
6秒前
6秒前
刘佳婷发布了新的文献求助10
10秒前
脸小呆呆完成签到 ,获得积分10
11秒前
14秒前
16秒前
Eid完成签到,获得积分10
16秒前
17秒前
852应助不知道起什么好采纳,获得10
18秒前
布布完成签到,获得积分10
19秒前
谨慎凡桃完成签到 ,获得积分10
20秒前
在水一方应助粥喝不喝采纳,获得10
22秒前
中和皇极给冰coke的求助进行了留言
24秒前
27秒前
午马未羊完成签到 ,获得积分10
30秒前
长江完成签到 ,获得积分10
30秒前
31秒前
JamesPei应助孤独树叶采纳,获得10
32秒前
32秒前
33秒前
赵晶晶完成签到,获得积分10
36秒前
adearfish完成签到 ,获得积分10
36秒前
凯凯宝发布了新的文献求助10
36秒前
小蘑菇应助托马斯亮绿采纳,获得10
37秒前
blossoms完成签到 ,获得积分10
37秒前
38秒前
献世应助凯凯宝采纳,获得10
41秒前
ding应助简单采纳,获得30
46秒前
46秒前
49秒前
51秒前
爱笑的毛衣完成签到,获得积分10
51秒前
锂炸发布了新的文献求助10
51秒前
科研通AI2S应助善良夜梅采纳,获得10
55秒前
ppg123应助最爱学习者采纳,获得10
56秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798