已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

idse-HE: Hybrid embedding graph neural network for drug side effects prediction

计算机科学 人工神经网络 嵌入 药品 图形 人工智能 理论计算机科学 机器学习 医学 药理学
作者
Liyi Yu,Meiling Cheng,Wang‐Ren Qiu,Xuan Xiao,Wei‐Zhong Lin
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:131: 104098-104098 被引量:23
标识
DOI:10.1016/j.jbi.2022.104098
摘要

In drug development, unexpected side effects are the main reason for the failure of candidate drug trials. Discovering potential side effects of drugs in silico can improve the success rate of drug screening. However, most previous works extracted and utilized an effective representation of drugs from a single perspective. These methods merely considered the topological information of drug in the biological entity network, or combined the association information (e.g. knowledge graph KG) between drug and other biomarkers, or only used the chemical structure or sequence information of drug. Consequently, to jointly learn drug features from both the macroscopic biological network and the microscopic drug molecules. We propose a hybrid embedding graph neural network model named idse-HE, which integrates graph embedding module and node embedding module. idse-HE can fuse the drug chemical structure information, the drug substructure sequence information and the drug network topology information. Our model deems the final representation of drugs and side effects as two implicit factors to reconstruct the original matrix and predicts the potential side effects of drugs. In the robustness experiment, idse-HE shows stable performance in all indicators. We reproduce the baselines under the same conditions, and the experimental results indicate that idse-HE is superior to other advanced methods. Finally, we also collect evidence to confirm several real drug side effect pairs in the predicted results, which were previously regarded as negative samples. More detailed information, scientific researchers can access the user-friendly web-server of idse-HE at http://bioinfo.jcu.edu.cn/idse-HE. In this server, users can obtain the original data and source code, and will be guided to reproduce the model results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助隐形大白采纳,获得10
1秒前
1秒前
1秒前
2秒前
端庄大白完成签到 ,获得积分10
2秒前
一叶舟完成签到 ,获得积分10
2秒前
小谢同学完成签到 ,获得积分10
4秒前
完美世界应助lalalatiancai采纳,获得10
4秒前
4秒前
xl完成签到 ,获得积分10
4秒前
万能图书馆应助kelvin采纳,获得10
6秒前
7秒前
Kiwi完成签到 ,获得积分10
8秒前
shinn发布了新的文献求助10
9秒前
11秒前
wzh完成签到 ,获得积分10
12秒前
陈小医发布了新的文献求助30
13秒前
传奇3应助王大壮采纳,获得10
20秒前
liwu完成签到 ,获得积分10
21秒前
希望天下0贩的0应助shinn采纳,获得10
22秒前
研友_n0kjPL完成签到,获得积分0
22秒前
猪猪完成签到 ,获得积分10
23秒前
TTTTTT完成签到,获得积分10
23秒前
苏苏完成签到,获得积分10
24秒前
淡淡博发布了新的文献求助10
26秒前
30秒前
31秒前
rff666完成签到,获得积分20
31秒前
2316690509完成签到 ,获得积分10
32秒前
嬴政飞完成签到 ,获得积分10
33秒前
迷人的天抒应助LUMOS采纳,获得10
34秒前
36秒前
王大壮发布了新的文献求助10
36秒前
shinn发布了新的文献求助10
37秒前
动听的琴完成签到,获得积分10
37秒前
leena完成签到 ,获得积分10
41秒前
情怀应助XXXXbb采纳,获得10
42秒前
43秒前
43秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629