Hyperspectral Image Classification Based on Class-Incremental Learning with Knowledge Distillation

高光谱成像 计算机科学 土地覆盖 人工智能 遥感 班级(哲学) 模式识别(心理学) 封面(代数) 上下文图像分类 图像(数学) 机器学习 数据挖掘 土地利用 地理 机械工程 工程类 土木工程
作者
Meng Xu,Yuanyuan Zhao,Liang Yajun,Xiaorui Ma
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 2556-2556 被引量:12
标识
DOI:10.3390/rs14112556
摘要

By virtue of its large-covered spatial information and high-resolution spectral information, hyperspectral images make lots of mapping-based fine-grained remote sensing applications possible. However, due to the inconsistency of land-cover types between different images, most hyperspectral image classification methods keep their effectiveness by training on every image and saving all classification models and training samples, which limits the promotion of related remote sensing tasks. To deal with the aforementioned issues, this paper proposes a hyperspectral image classification method based on class-incremental learning to learn new land-cover types without forgetting the old ones, which enables the classification method to classify all land-cover types with one final model. Specially, when learning new classes, a knowledge distillation strategy is designed to recall the information of old classes by transferring knowledge to the newly trained network, and a linear correction layer is proposed to relax the heavy bias towards the new class by reapportioning information between different classes. Additionally, the proposed method introduces a channel attention mechanism to effectively utilize spatial–spectral information by a recalibration strategy. Experimental results on the three widely used hyperspectral images demonstrate that the proposed method can identify both new and old land-cover types with high accuracy, which proves the proposed method is more practical in large-coverage remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CeciliaLee发布了新的文献求助10
刚刚
suye发布了新的文献求助10
1秒前
小羊医生完成签到,获得积分10
1秒前
美满访天关注了科研通微信公众号
1秒前
helppppp发布了新的文献求助10
1秒前
桐桐应助123yaoyao采纳,获得10
1秒前
Apple完成签到,获得积分10
2秒前
22222应助Hou_jiaqi采纳,获得200
2秒前
2秒前
柿子椒熊发布了新的文献求助10
2秒前
整齐依瑶发布了新的文献求助10
2秒前
2秒前
一位科研苟完成签到,获得积分20
3秒前
4秒前
犹豫忆灵完成签到,获得积分10
4秒前
4秒前
球球了发布了新的文献求助10
4秒前
5秒前
hi小豆发布了新的文献求助10
6秒前
田様应助王焜榉采纳,获得10
7秒前
7秒前
7秒前
glc12138完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Min应助整齐依瑶采纳,获得10
8秒前
桐桐应助聪明的依风采纳,获得10
9秒前
NexusExplorer应助helppppp采纳,获得10
9秒前
10秒前
liu完成签到,获得积分10
10秒前
10秒前
orixero应助ZG采纳,获得10
11秒前
11秒前
11秒前
11秒前
安静的幻竹完成签到,获得积分10
12秒前
12秒前
20ba发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802