Hyperspectral Image Classification Based on Class-Incremental Learning with Knowledge Distillation

高光谱成像 计算机科学 土地覆盖 人工智能 遥感 班级(哲学) 模式识别(心理学) 封面(代数) 上下文图像分类 图像(数学) 机器学习 数据挖掘 土地利用 地理 机械工程 工程类 土木工程
作者
Meng Xu,Yuanyuan Zhao,Liang Yajun,Xiaorui Ma
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 2556-2556 被引量:12
标识
DOI:10.3390/rs14112556
摘要

By virtue of its large-covered spatial information and high-resolution spectral information, hyperspectral images make lots of mapping-based fine-grained remote sensing applications possible. However, due to the inconsistency of land-cover types between different images, most hyperspectral image classification methods keep their effectiveness by training on every image and saving all classification models and training samples, which limits the promotion of related remote sensing tasks. To deal with the aforementioned issues, this paper proposes a hyperspectral image classification method based on class-incremental learning to learn new land-cover types without forgetting the old ones, which enables the classification method to classify all land-cover types with one final model. Specially, when learning new classes, a knowledge distillation strategy is designed to recall the information of old classes by transferring knowledge to the newly trained network, and a linear correction layer is proposed to relax the heavy bias towards the new class by reapportioning information between different classes. Additionally, the proposed method introduces a channel attention mechanism to effectively utilize spatial–spectral information by a recalibration strategy. Experimental results on the three widely used hyperspectral images demonstrate that the proposed method can identify both new and old land-cover types with high accuracy, which proves the proposed method is more practical in large-coverage remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心莫言完成签到,获得积分10
1秒前
时臣的错发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
科研助手6应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
FIN应助科研通管家采纳,获得30
2秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
瑶瑶瑶发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
111发布了新的文献求助100
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
L3213036054发布了新的文献求助10
3秒前
sdfgsdgs完成签到,获得积分10
4秒前
花栗鼠完成签到,获得积分10
5秒前
小野菌完成签到,获得积分10
5秒前
xxxx完成签到 ,获得积分20
8秒前
张三完成签到,获得积分10
9秒前
flyingF发布了新的文献求助10
10秒前
时臣的错完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049