Site‐Agnostic 3D dose distribution prediction with deep learning neural networks

计算机科学 杠杆(统计) 学习迁移 人工智能 概化理论 数据建模 深度学习 机器学习 数据挖掘 模式识别(心理学) 统计 数学 数据库
作者
Maryam Mashayekhi,Itzel Ramirez Tapia,Anjali Balagopal,Xinran Zhong,Azar Sadeghnejad Barkousaraie,Rafe McBeth,Mu‐Han Lin,Steve Jiang,Dan Nguyen
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1391-1406 被引量:1
标识
DOI:10.1002/mp.15461
摘要

Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs).When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98 , 3.04%±1.69 for D95 , and 1.83%±1.01 for D02 . Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs.We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉发布了新的文献求助10
刚刚
Huang完成签到 ,获得积分0
6秒前
小彬完成签到 ,获得积分10
6秒前
威武忆山完成签到 ,获得积分10
12秒前
金金完成签到 ,获得积分10
26秒前
jewel9完成签到,获得积分10
26秒前
Minhuky完成签到 ,获得积分10
28秒前
zhhr完成签到,获得积分10
36秒前
bookgg完成签到 ,获得积分10
48秒前
飞飞飞fff完成签到 ,获得积分10
49秒前
QY完成签到 ,获得积分10
49秒前
jyy应助科研通管家采纳,获得10
53秒前
jyy应助科研通管家采纳,获得10
53秒前
小小飞xxf完成签到 ,获得积分10
57秒前
雪花完成签到 ,获得积分10
58秒前
高速旋转老沁完成签到 ,获得积分10
1分钟前
April完成签到,获得积分10
1分钟前
胖胖完成签到 ,获得积分10
1分钟前
无限的续完成签到 ,获得积分10
1分钟前
黑大侠完成签到 ,获得积分10
1分钟前
cjq完成签到,获得积分10
1分钟前
猴子请来的救兵完成签到,获得积分10
1分钟前
皮卡丘完成签到 ,获得积分10
1分钟前
yinyin完成签到 ,获得积分10
1分钟前
蜂蜜柚子完成签到 ,获得积分10
1分钟前
十七完成签到 ,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
fff完成签到 ,获得积分10
1分钟前
unowhoiam完成签到 ,获得积分10
1分钟前
bts4ever完成签到 ,获得积分10
2分钟前
鞑靼完成签到 ,获得积分10
2分钟前
offshore完成签到 ,获得积分10
2分钟前
青黛完成签到 ,获得积分10
2分钟前
祈祈完成签到 ,获得积分10
2分钟前
Ampace小老弟完成签到 ,获得积分10
2分钟前
btcat完成签到,获得积分10
2分钟前
你是我爹完成签到 ,获得积分10
2分钟前
栋栋完成签到 ,获得积分10
2分钟前
宅心仁厚完成签到 ,获得积分10
2分钟前
怕黑的音响完成签到 ,获得积分10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793732
关于积分的说明 7807164
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350