Site‐Agnostic 3D dose distribution prediction with deep learning neural networks

计算机科学 杠杆(统计) 学习迁移 人工智能 概化理论 数据建模 深度学习 机器学习 数据挖掘 模式识别(心理学) 统计 数学 数据库
作者
Maryam Mashayekhi,Itzel Ramirez Tapia,Anjali Balagopal,Xinran Zhong,Azar Sadeghnejad Barkousaraie,Rafe McBeth,Mu‐Han Lin,Steve Jiang,Dan Nguyen
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1391-1406 被引量:1
标识
DOI:10.1002/mp.15461
摘要

Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs).When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98 , 3.04%±1.69 for D95 , and 1.83%±1.01 for D02 . Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs.We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ice完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
吕敬瑶完成签到,获得积分10
2秒前
3秒前
stone完成签到,获得积分10
3秒前
chinjaneking发布了新的文献求助10
5秒前
5秒前
5秒前
华仔应助yxc采纳,获得10
5秒前
6秒前
Hello应助YangLi采纳,获得10
6秒前
SciGPT应助yun采纳,获得10
6秒前
YS发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
思源应助Mc_Fan采纳,获得10
11秒前
zbm完成签到 ,获得积分10
11秒前
沉默的钵钵鸡完成签到,获得积分10
11秒前
13秒前
15秒前
甜心辣妹关注了科研通微信公众号
15秒前
red发布了新的文献求助10
16秒前
乐乐应助科学家采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
不吃了发布了新的文献求助10
17秒前
向上的小马完成签到,获得积分10
18秒前
18秒前
yun发布了新的文献求助10
19秒前
night发布了新的文献求助10
20秒前
21秒前
zrl发布了新的文献求助10
22秒前
22秒前
饼干发布了新的文献求助10
23秒前
英吉利25发布了新的文献求助10
23秒前
23秒前
椿椿完成签到,获得积分10
24秒前
24秒前
bkagyin应助不散的和弦采纳,获得10
25秒前
吕士晋完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858