Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation

计算机科学 电动汽车 数学优化 功率(物理) 数学 量子力学 物理
作者
Wendi Zheng,Min Zhang,Yixin Li,Zhenguo Shao,Xiangjie Wang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:47 (13): 8502-8513 被引量:16
标识
DOI:10.1016/j.ijhydene.2021.12.157
摘要

The ongoing growth of green vehicles had led to an increase in demand of cost-effective and driver-satisfactory hydrogen/electric vehicle aggregators (HEVAs). However, existing approaches for cost minimization of HEVA can lead to poor performance due to the inaccurate modelling of power–gas exchange system and neglection of schedulable characteristics of loads. Furthermore, the behaviour of drivers was rarely considered from a psychological perspective. To resolve these limitations, the optimal dispatch scheme of HEVA, equipped with reversible solid oxide cell (rSOC), is investigated by quantifying drivers’ charging decision response toward pricing stimuli. As the core of the bi-directional energy conversion, rSOC is modelled by considering the climbing power constraints and time-dependent restart-up cost. At the driver side, EVs are aggregated as clusters for efficient computation. Two charging modes are designed for drivers with incentive discounts. To measure the relationship between external factors and charging decision response, the stimuli-responsive charging decision estimation is proposed by introducing Weber–Fechner law (W–F Law). To minimum operation cost, a mixed integer nonlinear programming (MINP) method is presented. The results validate that the operation cost of HEVA can be decreased by 19.37%, and the maximum utilization of energy is realised in the proposed scheme. Additionally, the impacts of sizes of power–gas exchange devices are investigated for practical reference. Under a given charging demand, the proposed dispatch scheme can realise installation of smaller devices, and thereby, resulting in lower construction cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yun完成签到 ,获得积分10
1秒前
永梦发布了新的文献求助10
1秒前
老年学术废物完成签到 ,获得积分10
2秒前
2秒前
xieqq00发布了新的文献求助10
3秒前
一只科研pig完成签到 ,获得积分10
3秒前
充电宝应助orechan采纳,获得10
4秒前
知犯何逆发布了新的文献求助10
4秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
研究生end应助科研通管家采纳,获得10
6秒前
lft361应助自觉的向薇采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
6秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI5应助张先生采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
研究生end应助科研通管家采纳,获得10
6秒前
Tsuki完成签到 ,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
俊逸傲柏完成签到,获得积分10
7秒前
zhaoqing完成签到,获得积分10
7秒前
sxkoala应助Rinamamiya采纳,获得50
7秒前
7秒前
斯文败类应助arton采纳,获得10
9秒前
脑洞疼应助爱打乒乓球采纳,获得10
10秒前
gnykdx完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112322
求助须知:如何正确求助?哪些是违规求助? 4320138
关于积分的说明 13461020
捐赠科研通 4151155
什么是DOI,文献DOI怎么找? 2274630
邀请新用户注册赠送积分活动 1276485
关于科研通互助平台的介绍 1214649