Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation

计算机科学 电动汽车 数学优化 功率(物理) 数学 量子力学 物理
作者
Wendi Zheng,Min Zhang,Yixin Li,Zhenguo Shao,Xiangjie Wang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (13): 8502-8513 被引量:14
标识
DOI:10.1016/j.ijhydene.2021.12.157
摘要

The ongoing growth of green vehicles had led to an increase in demand of cost-effective and driver-satisfactory hydrogen/electric vehicle aggregators (HEVAs). However, existing approaches for cost minimization of HEVA can lead to poor performance due to the inaccurate modelling of power–gas exchange system and neglection of schedulable characteristics of loads. Furthermore, the behaviour of drivers was rarely considered from a psychological perspective. To resolve these limitations, the optimal dispatch scheme of HEVA, equipped with reversible solid oxide cell (rSOC), is investigated by quantifying drivers’ charging decision response toward pricing stimuli. As the core of the bi-directional energy conversion, rSOC is modelled by considering the climbing power constraints and time-dependent restart-up cost. At the driver side, EVs are aggregated as clusters for efficient computation. Two charging modes are designed for drivers with incentive discounts. To measure the relationship between external factors and charging decision response, the stimuli-responsive charging decision estimation is proposed by introducing Weber–Fechner law (W–F Law). To minimum operation cost, a mixed integer nonlinear programming (MINP) method is presented. The results validate that the operation cost of HEVA can be decreased by 19.37%, and the maximum utilization of energy is realised in the proposed scheme. Additionally, the impacts of sizes of power–gas exchange devices are investigated for practical reference. Under a given charging demand, the proposed dispatch scheme can realise installation of smaller devices, and thereby, resulting in lower construction cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的河马完成签到,获得积分10
刚刚
文静寄琴完成签到 ,获得积分10
刚刚
1秒前
小乔发布了新的文献求助10
1秒前
王英俊完成签到,获得积分10
2秒前
个性的汲完成签到,获得积分10
3秒前
qcomputer完成签到,获得积分10
3秒前
赘婿应助Yimi采纳,获得10
3秒前
Susan发布了新的文献求助10
3秒前
衬衫完成签到,获得积分10
3秒前
左丘忻完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
科目三应助Gump采纳,获得10
5秒前
cc爱学习完成签到,获得积分10
5秒前
万能图书馆应助果栋蜀黍采纳,获得10
6秒前
lydiaabc发布了新的文献求助10
7秒前
9秒前
汪汪发布了新的文献求助10
9秒前
9秒前
在水一方应助妍妍采纳,获得10
10秒前
昂口3完成签到 ,获得积分10
10秒前
CodeCraft应助yangxt-iga采纳,获得10
10秒前
10秒前
oceanao应助ranj采纳,获得10
10秒前
得鹿梦鱼完成签到,获得积分10
11秒前
天天快乐应助十月采纳,获得10
11秒前
11秒前
12秒前
慕青应助Emma采纳,获得30
12秒前
12秒前
独特安阳完成签到,获得积分10
12秒前
王小妖完成签到 ,获得积分10
12秒前
烟花应助silencemch采纳,获得10
13秒前
小刘小刘完成签到 ,获得积分10
13秒前
从容芮应助Eva采纳,获得10
13秒前
13秒前
13秒前
HK完成签到,获得积分20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155576
求助须知:如何正确求助?哪些是违规求助? 2806779
关于积分的说明 7870685
捐赠科研通 2465047
什么是DOI,文献DOI怎么找? 1312118
科研通“疑难数据库(出版商)”最低求助积分说明 629877
版权声明 601892