计算机科学
缺少数据
系列(地层学)
嵌入
发电机(电路理论)
时间序列
维数(图论)
特征向量
编码(集合论)
生成模型
潜变量
生成语法
人工智能
数据挖掘
机器学习
功率(物理)
数学
量子力学
纯数学
程序设计语言
集合(抽象数据类型)
古生物学
物理
生物
作者
Hengzhi Pei,Kan Ren,Yuqing Yang,Chang Liu,Tao Qin,Dongsheng Li
标识
DOI:10.1109/icdm51629.2021.00058
摘要
Time series data generation has drawn increasing attention in recent years. Several generative adversarial network (GAN) based methods have been proposed to tackle the problem usually with the assumption that the targeted time series data are well-formatted and complete. However, real-world time series (RTS) data are far away from this utopia, e.g., long sequences with variable lengths and informative missing data raise intractable challenges for designing powerful generation algorithms. In this paper, we propose a novel generative framework for RTS data – RTSGAN to tackle the aforementioned challenges. RTSGAN first learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector and then learns a generation module to generate vectors in the same latent space. By combining the generator and the decoder, RTSGAN is able to generate RTS which respect the original feature distributions and the temporal dynamics. To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder to better utilize the informative missing patterns. Experiments on the four RTS datasets show that the proposed framework outperforms the previous generation methods in terms of synthetic data utility for downstream classification and prediction tasks. Our code is available at https://seqml.github.io/rtsgan.
科研通智能强力驱动
Strongly Powered by AbleSci AI