亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Generating Real-World Time Series Data

计算机科学 缺少数据 系列(地层学) 嵌入 发电机(电路理论) 时间序列 维数(图论) 特征向量 编码(集合论) 生成模型 潜变量 生成语法 人工智能 数据挖掘 机器学习 功率(物理) 数学 量子力学 纯数学 程序设计语言 集合(抽象数据类型) 古生物学 物理 生物
作者
Hengzhi Pei,Kan Ren,Yuqing Yang,Chang Liu,Tao Qin,Dongsheng Li
标识
DOI:10.1109/icdm51629.2021.00058
摘要

Time series data generation has drawn increasing attention in recent years. Several generative adversarial network (GAN) based methods have been proposed to tackle the problem usually with the assumption that the targeted time series data are well-formatted and complete. However, real-world time series (RTS) data are far away from this utopia, e.g., long sequences with variable lengths and informative missing data raise intractable challenges for designing powerful generation algorithms. In this paper, we propose a novel generative framework for RTS data – RTSGAN to tackle the aforementioned challenges. RTSGAN first learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector and then learns a generation module to generate vectors in the same latent space. By combining the generator and the decoder, RTSGAN is able to generate RTS which respect the original feature distributions and the temporal dynamics. To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder to better utilize the informative missing patterns. Experiments on the four RTS datasets show that the proposed framework outperforms the previous generation methods in terms of synthetic data utility for downstream classification and prediction tasks. Our code is available at https://seqml.github.io/rtsgan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
刺1656发布了新的文献求助10
33秒前
33秒前
jiangmi完成签到,获得积分10
49秒前
Sene完成签到,获得积分10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
感动初蓝完成签到 ,获得积分10
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
蒙恩Maria发布了新的文献求助10
2分钟前
2分钟前
蒙恩Maria完成签到,获得积分10
2分钟前
Pattis完成签到 ,获得积分10
3分钟前
鲸鱼完成签到 ,获得积分10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
moaner完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
优秀的甜菜完成签到,获得积分10
4分钟前
zznzn发布了新的文献求助10
4分钟前
Hello应助zznzn采纳,获得10
4分钟前
橘笙发布了新的文献求助10
5分钟前
Ricardo完成签到 ,获得积分10
5分钟前
5分钟前
橘笙完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
迷路的曼梅完成签到,获得积分10
6分钟前
852应助留白采纳,获得10
6分钟前
6分钟前
7分钟前
lsl完成签到 ,获得积分10
7分钟前
Una完成签到,获得积分10
7分钟前
熬夜波比应助yang采纳,获得10
7分钟前
留白完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4912050
关于积分的说明 15134209
捐赠科研通 4829983
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540225
关于科研通互助平台的介绍 1498423