scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data

聚类分析 计算机科学 人工智能 特征学习 稳健性(进化) 判别式 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 生物化学 化学 语言学 哲学 基因
作者
Hui Wan,Liang Chen,Minghua Deng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (6): 1575-1583 被引量:14
标识
DOI:10.1093/bioinformatics/btac011
摘要

The rapid development of single-cell RNA sequencing (scRNA-seq) makes it possible to study the heterogeneity of individual cell characteristics. Cell clustering is a vital procedure in scRNA-seq analysis, providing insight into complex biological phenomena. However, the noisy, high-dimensional and large-scale nature of scRNA-seq data introduces challenges in clustering analysis. Up to now, many deep learning-based methods have emerged to learn underlying feature representations while clustering. However, these methods are inefficient when it comes to rare cell type identification and barely able to fully utilize gene dependencies or cell similarity integrally. As a result, they cannot detect a clear cell type structure which is required for clustering accuracy as well as downstream analysis.Here, we propose a novel scRNA-seq clustering algorithm called scNAME which incorporates a mask estimation task for gene pertinence mining and a neighborhood contrastive learning framework for cell intrinsic structure exploitation. The learned pattern through mask estimation helps reveal uncorrupted data structure and denoise the original single-cell data. In addition, the randomly created augmented data introduced in contrastive learning not only helps improve robustness of clustering, but also increases sample size in each cluster for better data capacity. Beyond this, we also introduce a neighborhood contrastive paradigm with an offline memory bank, global in scope, which can inspire discriminative feature representation and achieve intra-cluster compactness, yet inter-cluster separation. The combination of mask estimation task, neighborhood contrastive learning and global memory bank designed in scNAME is conductive to rare cell type detection. The experimental results of both simulations and real data confirm that our method is accurate, robust and scalable. We also implement biological analysis, including marker gene identification, gene ontology and pathway enrichment analysis, to validate the biological significance of our method. To the best of our knowledge, we are among the first to introduce a gene relationship exploration strategy, as well as a global cellular similarity repository, in the single-cell field.An implementation of scNAME is available from https://github.com/aster-ww/scNAME.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷傲的涵双完成签到,获得积分10
1秒前
1秒前
moaper发布了新的文献求助10
1秒前
予东完成签到,获得积分10
2秒前
3秒前
pophoo发布了新的文献求助10
3秒前
3秒前
Gstar完成签到,获得积分10
3秒前
orange完成签到,获得积分10
4秒前
黄黄完成签到,获得积分20
4秒前
wujuan发布了新的文献求助10
4秒前
aka小满完成签到,获得积分10
4秒前
4秒前
4秒前
脑洞疼应助1117采纳,获得10
5秒前
一只小松徐完成签到,获得积分10
5秒前
5秒前
6秒前
nelson发布了新的文献求助10
6秒前
8023完成签到,获得积分20
6秒前
星际舟完成签到,获得积分10
6秒前
晴晨发布了新的文献求助10
6秒前
7秒前
感冒了完成签到,获得积分10
7秒前
Akim应助黄黄采纳,获得10
7秒前
大气的山彤完成签到,获得积分10
7秒前
搜集达人应助moaper采纳,获得10
8秒前
科研岳完成签到,获得积分10
8秒前
天天天才完成签到,获得积分10
8秒前
8秒前
凌寻绿完成签到,获得积分10
8秒前
科研菜狗完成签到,获得积分10
9秒前
9秒前
sunshine完成签到,获得积分10
9秒前
Accepted应助陈椅子的求学采纳,获得10
9秒前
gcy完成签到,获得积分10
10秒前
10秒前
渊山发布了新的文献求助10
10秒前
amehime发布了新的文献求助10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443