scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data

聚类分析 计算机科学 人工智能 特征学习 稳健性(进化) 判别式 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 生物化学 化学 语言学 哲学 基因
作者
Hui Wan,Liang Chen,Minghua Deng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (6): 1575-1583 被引量:14
标识
DOI:10.1093/bioinformatics/btac011
摘要

The rapid development of single-cell RNA sequencing (scRNA-seq) makes it possible to study the heterogeneity of individual cell characteristics. Cell clustering is a vital procedure in scRNA-seq analysis, providing insight into complex biological phenomena. However, the noisy, high-dimensional and large-scale nature of scRNA-seq data introduces challenges in clustering analysis. Up to now, many deep learning-based methods have emerged to learn underlying feature representations while clustering. However, these methods are inefficient when it comes to rare cell type identification and barely able to fully utilize gene dependencies or cell similarity integrally. As a result, they cannot detect a clear cell type structure which is required for clustering accuracy as well as downstream analysis.Here, we propose a novel scRNA-seq clustering algorithm called scNAME which incorporates a mask estimation task for gene pertinence mining and a neighborhood contrastive learning framework for cell intrinsic structure exploitation. The learned pattern through mask estimation helps reveal uncorrupted data structure and denoise the original single-cell data. In addition, the randomly created augmented data introduced in contrastive learning not only helps improve robustness of clustering, but also increases sample size in each cluster for better data capacity. Beyond this, we also introduce a neighborhood contrastive paradigm with an offline memory bank, global in scope, which can inspire discriminative feature representation and achieve intra-cluster compactness, yet inter-cluster separation. The combination of mask estimation task, neighborhood contrastive learning and global memory bank designed in scNAME is conductive to rare cell type detection. The experimental results of both simulations and real data confirm that our method is accurate, robust and scalable. We also implement biological analysis, including marker gene identification, gene ontology and pathway enrichment analysis, to validate the biological significance of our method. To the best of our knowledge, we are among the first to introduce a gene relationship exploration strategy, as well as a global cellular similarity repository, in the single-cell field.An implementation of scNAME is available from https://github.com/aster-ww/scNAME.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仄言完成签到,获得积分10
刚刚
1秒前
儒雅的斑马完成签到,获得积分10
1秒前
汉堡包应助咕噜仔采纳,获得10
1秒前
FashionBoy应助momo采纳,获得10
1秒前
2秒前
2秒前
3秒前
第七兵团司令完成签到,获得积分10
4秒前
4秒前
qwq应助追梦采纳,获得10
4秒前
4秒前
5秒前
我爱Chem完成签到 ,获得积分10
5秒前
半生发布了新的文献求助30
6秒前
6秒前
成就梦松完成签到,获得积分10
6秒前
byyyy完成签到,获得积分10
6秒前
温暖的俊驰完成签到,获得积分10
7秒前
Isabel完成签到,获得积分10
7秒前
yx应助陈强采纳,获得30
8秒前
sokach发布了新的文献求助10
10秒前
缓慢荔枝发布了新的文献求助10
10秒前
123发布了新的文献求助10
11秒前
天御雪完成签到,获得积分10
11秒前
gen关闭了gen文献求助
11秒前
11秒前
科研通AI5应助oldlee采纳,获得10
12秒前
12秒前
MADKAI发布了新的文献求助10
12秒前
哈哈悦完成签到,获得积分10
12秒前
赘婿应助duoduozs采纳,获得10
12秒前
kai完成签到,获得积分10
13秒前
13秒前
情怀应助xhy采纳,获得10
13秒前
整齐的灭绝完成签到 ,获得积分10
14秒前
充电宝应助船舵采纳,获得10
14秒前
lqphysics完成签到,获得积分10
14秒前
14秒前
小小完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672