scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data

聚类分析 计算机科学 人工智能 特征学习 稳健性(进化) 判别式 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 生物化学 化学 语言学 哲学 基因
作者
Hui Wan,Liang Chen,Minghua Deng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (6): 1575-1583 被引量:14
标识
DOI:10.1093/bioinformatics/btac011
摘要

The rapid development of single-cell RNA sequencing (scRNA-seq) makes it possible to study the heterogeneity of individual cell characteristics. Cell clustering is a vital procedure in scRNA-seq analysis, providing insight into complex biological phenomena. However, the noisy, high-dimensional and large-scale nature of scRNA-seq data introduces challenges in clustering analysis. Up to now, many deep learning-based methods have emerged to learn underlying feature representations while clustering. However, these methods are inefficient when it comes to rare cell type identification and barely able to fully utilize gene dependencies or cell similarity integrally. As a result, they cannot detect a clear cell type structure which is required for clustering accuracy as well as downstream analysis.Here, we propose a novel scRNA-seq clustering algorithm called scNAME which incorporates a mask estimation task for gene pertinence mining and a neighborhood contrastive learning framework for cell intrinsic structure exploitation. The learned pattern through mask estimation helps reveal uncorrupted data structure and denoise the original single-cell data. In addition, the randomly created augmented data introduced in contrastive learning not only helps improve robustness of clustering, but also increases sample size in each cluster for better data capacity. Beyond this, we also introduce a neighborhood contrastive paradigm with an offline memory bank, global in scope, which can inspire discriminative feature representation and achieve intra-cluster compactness, yet inter-cluster separation. The combination of mask estimation task, neighborhood contrastive learning and global memory bank designed in scNAME is conductive to rare cell type detection. The experimental results of both simulations and real data confirm that our method is accurate, robust and scalable. We also implement biological analysis, including marker gene identification, gene ontology and pathway enrichment analysis, to validate the biological significance of our method. To the best of our knowledge, we are among the first to introduce a gene relationship exploration strategy, as well as a global cellular similarity repository, in the single-cell field.An implementation of scNAME is available from https://github.com/aster-ww/scNAME.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨小黑发布了新的文献求助10
刚刚
法芙娜发布了新的文献求助10
刚刚
三七完成签到,获得积分10
2秒前
2秒前
judy891zhu完成签到,获得积分10
2秒前
3秒前
3秒前
自由正豪完成签到,获得积分10
3秒前
在水一方应助水中鱼采纳,获得10
3秒前
3秒前
脑洞疼应助欣慰宛菡采纳,获得10
4秒前
4秒前
小蘑菇应助xiaoshuai采纳,获得10
4秒前
Ava应助香云采纳,获得10
5秒前
丘比特应助Jane采纳,获得10
5秒前
搜集达人应助小于采纳,获得10
5秒前
beyondjun完成签到,获得积分10
5秒前
5秒前
5秒前
逆流的鱼完成签到 ,获得积分10
6秒前
乐正亦寒完成签到 ,获得积分10
6秒前
dong应助Ogai采纳,获得10
7秒前
Jasper应助市不辣采纳,获得10
7秒前
李健的小迷弟应助zmj采纳,获得10
7秒前
小先生发布了新的文献求助10
8秒前
晓晓完成签到,获得积分10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
beyondjun发布了新的文献求助10
9秒前
YuHang发布了新的文献求助10
9秒前
牛奶发布了新的文献求助10
9秒前
10秒前
清明发布了新的文献求助10
10秒前
11秒前
11秒前
汉堡包应助没烦恼小婷采纳,获得10
11秒前
领导范儿应助晓晓采纳,获得10
11秒前
12秒前
乙醇完成签到 ,获得积分10
13秒前
13秒前
turbohero发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352