Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach

计算机科学 潜在Dirichlet分配 多项式logistic回归 营销 人工智能 机器学习 主题模型 业务
作者
Kamil Matuszelański,Katarzyna Kopczewska
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [Multidisciplinary Digital Publishing Institute]
卷期号:17 (1): 165-198 被引量:64
标识
DOI:10.3390/jtaer17010009
摘要

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱笑晓曼发布了新的文献求助20
4秒前
老大蒂亚戈应助YJ888采纳,获得10
5秒前
JamesPei应助潇湘雪月采纳,获得10
5秒前
bbczj发布了新的文献求助10
7秒前
8秒前
9秒前
南风知我意完成签到,获得积分20
10秒前
段一帆发布了新的文献求助30
12秒前
wangqinlei完成签到 ,获得积分10
12秒前
fenghp发布了新的文献求助10
13秒前
王馨雨发布了新的文献求助10
13秒前
15秒前
CipherSage应助ccalvintan采纳,获得10
16秒前
16秒前
雪天的阳完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
烟花应助ren采纳,获得10
21秒前
讨厌科研发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
苏卿应助科研通管家采纳,获得30
23秒前
fd163c应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得30
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
24秒前
殷勤的紫槐完成签到,获得积分10
24秒前
风轻青柠发布了新的文献求助10
25秒前
25秒前
机智冬灵完成签到,获得积分10
26秒前
27秒前
为小嗳打伞完成签到 ,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174