Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach

计算机科学 潜在Dirichlet分配 多项式logistic回归 营销 人工智能 机器学习 主题模型 业务
作者
Kamil Matuszelański,Katarzyna Kopczewska
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [MDPI AG]
卷期号:17 (1): 165-198 被引量:64
标识
DOI:10.3390/jtaer17010009
摘要

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomorrow发布了新的文献求助10
1秒前
1秒前
Ray发布了新的文献求助10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
西西里柠檬完成签到,获得积分10
6秒前
sxmt123456789发布了新的文献求助10
7秒前
美好斓发布了新的文献求助10
7秒前
zhengguolong完成签到,获得积分10
9秒前
优美紫槐发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
sxmt123456789完成签到,获得积分10
12秒前
12秒前
麦地娜发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
14秒前
15秒前
王王应助kklove采纳,获得20
16秒前
CAOHOU应助单薄的八宝粥采纳,获得10
16秒前
FashionBoy应助单薄的八宝粥采纳,获得10
17秒前
斯文败类应助优美紫槐采纳,获得10
17秒前
tomorrow完成签到,获得积分10
18秒前
18秒前
Mayday发布了新的文献求助10
18秒前
hx0107完成签到,获得积分20
18秒前
看文献了发布了新的文献求助10
19秒前
21秒前
22秒前
凯王爷应助彩虹小马采纳,获得10
22秒前
无花果应助坦率的之卉采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
爱听歌的书雪完成签到,获得积分10
24秒前
今后应助高高的夕阳采纳,获得10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535