重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach

计算机科学 潜在Dirichlet分配 多项式logistic回归 营销 人工智能 机器学习 主题模型 业务
作者
Kamil Matuszelański,Katarzyna Kopczewska
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [MDPI AG]
卷期号:17 (1): 165-198 被引量:64
标识
DOI:10.3390/jtaer17010009
摘要

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王班长爱学习完成签到,获得积分10
刚刚
刚刚
yznfly应助shilong.yang采纳,获得40
1秒前
其奈公何完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
bbzzzha发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
陶醉的纲完成签到,获得积分10
3秒前
着急的向雁完成签到,获得积分10
3秒前
xxy应助nebula采纳,获得30
3秒前
阳光桐完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
喜洋羊完成签到,获得积分20
4秒前
淀粉肠发布了新的文献求助20
5秒前
5秒前
zeng5288发布了新的文献求助30
5秒前
5秒前
hehexi发布了新的文献求助10
6秒前
111发布了新的文献求助100
6秒前
无问西东完成签到,获得积分10
6秒前
wwww完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
憨厚波涛发布了新的文献求助30
8秒前
rock发布了新的文献求助200
8秒前
天玄发布了新的文献求助10
8秒前
迷你的唇彩完成签到,获得积分20
8秒前
9秒前
小三子完成签到,获得积分10
9秒前
幽默尔蓝发布了新的文献求助10
10秒前
10秒前
10秒前
俊逸翠柏完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516