Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach

计算机科学 潜在Dirichlet分配 多项式logistic回归 营销 人工智能 机器学习 主题模型 业务
作者
Kamil Matuszelański,Katarzyna Kopczewska
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [MDPI AG]
卷期号:17 (1): 165-198 被引量:64
标识
DOI:10.3390/jtaer17010009
摘要

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得30
1秒前
Singularity应助科研通管家采纳,获得20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
杰哥完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得80
2秒前
iNk应助科研通管家采纳,获得20
2秒前
2秒前
boging完成签到,获得积分10
3秒前
3秒前
Duke完成签到,获得积分10
4秒前
牛魔王干饭完成签到,获得积分10
4秒前
背后问玉完成签到,获得积分10
5秒前
6秒前
康康星完成签到,获得积分10
7秒前
8秒前
8秒前
wang发布了新的文献求助10
8秒前
重要的孤风完成签到 ,获得积分10
8秒前
czj完成签到,获得积分10
9秒前
NexusExplorer应助zhu采纳,获得30
10秒前
10秒前
六月发布了新的文献求助10
11秒前
酷波er应助笨笨竹尔采纳,获得10
11秒前
打打应助笨笨竹尔采纳,获得10
11秒前
张炎完成签到,获得积分0
11秒前
11秒前
骨小梁完成签到,获得积分20
12秒前
12秒前
黄黄完成签到,获得积分0
13秒前
13秒前
钱浩发布了新的文献求助10
13秒前
sw98318完成签到,获得积分10
13秒前
痴情的翠桃完成签到,获得积分10
13秒前
15秒前
飘逸的烧鹅完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384