Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach

计算机科学 潜在Dirichlet分配 多项式logistic回归 营销 人工智能 机器学习 主题模型 业务
作者
Kamil Matuszelański,Katarzyna Kopczewska
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [MDPI AG]
卷期号:17 (1): 165-198 被引量:64
标识
DOI:10.3390/jtaer17010009
摘要

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚美阁完成签到 ,获得积分10
刚刚
mufcyang发布了新的文献求助10
1秒前
2秒前
2秒前
Puffkten发布了新的文献求助10
3秒前
与梦随行2011完成签到,获得积分10
3秒前
3秒前
高哈哈哈完成签到,获得积分10
4秒前
yr发布了新的文献求助10
7秒前
8秒前
微笑翠桃发布了新的文献求助10
11秒前
11秒前
马佳音完成签到 ,获得积分10
12秒前
在水一方应助Eon采纳,获得10
12秒前
TB123发布了新的文献求助10
12秒前
14秒前
JHL完成签到 ,获得积分10
14秒前
16秒前
16秒前
黎是叻熠黎完成签到,获得积分10
17秒前
每天必补一科完成签到,获得积分10
17秒前
花生完成签到,获得积分10
18秒前
mufcyang完成签到,获得积分10
18秒前
19秒前
缪缪发布了新的文献求助10
20秒前
20秒前
风清扬发布了新的文献求助10
21秒前
甜美乘云完成签到,获得积分10
22秒前
万能图书馆应助嘿嘿采纳,获得10
22秒前
24秒前
24秒前
xuxin完成签到 ,获得积分10
25秒前
大模型应助温柔柜子采纳,获得10
25秒前
啦啦啦完成签到,获得积分10
25秒前
易点邦发布了新的文献求助10
26秒前
26秒前
yyymmm完成签到,获得积分10
28秒前
Anna完成签到 ,获得积分10
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714