A Fully Automated Multimodal MRI-based Multi-task Learning for Glioma Segmentation and IDH Genotyping

计算机科学 人工智能 卷积神经网络 分割 深度学习 多任务学习 编码器 机器学习 分类器(UML) 模式识别(心理学)
作者
Jianhong Cheng,Jin Liu,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3142321
摘要

The accurate prediction of isocitrate dehydrogenase (IDH) mutation and glioma segmentation are important tasks for computer-aided diagnosis using preoperative multimodal magnetic resonance imaging (MRI). The two tasks are ongoing challenges due to the significant inter-tumor and intra-tumor heterogeneity. The existing methods to address them are mostly based on single-task approaches without considering the correlation between the two tasks. In addition, the acquisition of IDH genetic labels is expensive and costly, resulting in a limited number of IDH mutation data for modeling. To comprehensively address these problems, we propose a fully automated multimodal MRI-based multi-task learning framework for simultaneous glioma segmentation and IDH genotyping. Specifically, the task correlation and heterogeneity are tackled with a hybrid CNN-Transformer encoder that consists of a convolutional neural network and a transformer to extract the shared spatial and global information learned from a decoder for glioma segmentation and a multi-scale classifier for IDH genotyping. Then, a multi-task learning loss is designed to balance the two tasks by combining the segmentation and classification loss functions with uncertain weights. Finally, an uncertainty-aware pseudo-label selection is proposed to generate IDH pseudo-labels from larger unlabeled data for improving the accuracy of IDH genotyping by using semi-supervised learning. We evaluate our method on a multi-institutional public dataset. Experimental results show that our proposed multi-task network achieves promising performance and outperforms the single-task learning counterparts and other existing state-of-the-art methods. With the introduction of unlabeled data, the semi-supervised multi-task learning framework further improves the performance of glioma segmentation and IDH genotyping. The source codes of our framework are publicly available at https://github.com/miacsu/MTTU-Net.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8R60d8应助赫连又蓝采纳,获得10
1秒前
4秒前
快乐应助hehehehe采纳,获得10
5秒前
6秒前
iTaciturne发布了新的文献求助10
7秒前
燕忆山完成签到,获得积分10
7秒前
9秒前
9秒前
科研通AI2S应助重要英姑采纳,获得10
10秒前
10秒前
应语海发布了新的文献求助10
10秒前
Yzh完成签到,获得积分10
11秒前
CHEN完成签到,获得积分10
11秒前
jadexuanxuan完成签到,获得积分10
11秒前
王家乐完成签到,获得积分20
11秒前
11秒前
12秒前
益达男友发布了新的文献求助30
12秒前
12秒前
谢谢各位大佬完成签到,获得积分10
13秒前
13秒前
糊涂的尔蝶完成签到,获得积分10
13秒前
13秒前
14秒前
李雨轩发布了新的文献求助10
14秒前
桐桐应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得20
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
苏卿应助junru采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
调研昵称发布了新的文献求助30
16秒前
丘比特应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
陈陈完成签到 ,获得积分10
17秒前
csr发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905