亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping

计算机科学 人工智能 卷积神经网络 分割 深度学习 多任务学习 编码器 机器学习 分类器(UML) 模式识别(心理学)
作者
Jianhong Cheng,Jin Liu,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1520-1532 被引量:159
标识
DOI:10.1109/tmi.2022.3142321
摘要

The accurate prediction of isocitrate dehydrogenase (IDH) mutation and glioma segmentation are important tasks for computer-aided diagnosis using preoperative multimodal magnetic resonance imaging (MRI). The two tasks are ongoing challenges due to the significant inter-tumor and intra-tumor heterogeneity. The existing methods to address them are mostly based on single-task approaches without considering the correlation between the two tasks. In addition, the acquisition of IDH genetic labels is expensive and costly, resulting in a limited number of IDH mutation data for modeling. To comprehensively address these problems, we propose a fully automated multimodal MRI-based multi-task learning framework for simultaneous glioma segmentation and IDH genotyping. Specifically, the task correlation and heterogeneity are tackled with a hybrid CNN-Transformer encoder that consists of a convolutional neural network and a transformer to extract the shared spatial and global information learned from a decoder for glioma segmentation and a multi-scale classifier for IDH genotyping. Then, a multi-task learning loss is designed to balance the two tasks by combining the segmentation and classification loss functions with uncertain weights. Finally, an uncertainty-aware pseudo-label selection is proposed to generate IDH pseudo-labels from larger unlabeled data for improving the accuracy of IDH genotyping by using semi-supervised learning. We evaluate our method on a multi-institutional public dataset. Experimental results show that our proposed multi-task network achieves promising performance and outperforms the single-task learning counterparts and other existing state-of-the-art methods. With the introduction of unlabeled data, the semi-supervised multi-task learning framework further improves the performance of glioma segmentation and IDH genotyping. The source codes of our framework are publicly available at https://github.com/miacsu/MTTU-Net.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
dly完成签到 ,获得积分10
5秒前
DanYang完成签到,获得积分10
37秒前
43秒前
魔幻的芳完成签到,获得积分10
43秒前
luke完成签到 ,获得积分10
45秒前
火星上的宝马完成签到,获得积分10
47秒前
47秒前
悲凉的忆南完成签到,获得积分10
50秒前
guan发布了新的文献求助10
50秒前
陈旧完成签到,获得积分10
53秒前
小二郎应助梅菜肉包子采纳,获得10
56秒前
欣欣子完成签到,获得积分10
56秒前
热心平萱发布了新的文献求助10
58秒前
sunstar完成签到,获得积分10
1分钟前
拉长的从灵完成签到,获得积分10
1分钟前
1分钟前
yxl完成签到,获得积分10
1分钟前
Luke2完成签到 ,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
尘默发布了新的文献求助10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
1分钟前
Hello应助尘默采纳,获得10
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
流苏2完成签到,获得积分10
1分钟前
小二郎应助zhang采纳,获得10
1分钟前
Redart完成签到,获得积分20
1分钟前
Moto_Fang完成签到 ,获得积分10
2分钟前
2分钟前
尘默发布了新的文献求助10
2分钟前
科研通AI6.1应助坚定汝燕采纳,获得30
2分钟前
Orange应助尘默采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875781
求助须知:如何正确求助?哪些是违规求助? 6521186
关于积分的说明 15677635
捐赠科研通 4993878
什么是DOI,文献DOI怎么找? 2691651
邀请新用户注册赠送积分活动 1633871
关于科研通互助平台的介绍 1591524