已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Fully Automated Multimodal MRI-based Multi-task Learning for Glioma Segmentation and IDH Genotyping

计算机科学 人工智能 卷积神经网络 分割 深度学习 多任务学习 编码器 机器学习 分类器(UML) 模式识别(心理学)
作者
Jianhong Cheng,Jin Liu,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3142321
摘要

The accurate prediction of isocitrate dehydrogenase (IDH) mutation and glioma segmentation are important tasks for computer-aided diagnosis using preoperative multimodal magnetic resonance imaging (MRI). The two tasks are ongoing challenges due to the significant inter-tumor and intra-tumor heterogeneity. The existing methods to address them are mostly based on single-task approaches without considering the correlation between the two tasks. In addition, the acquisition of IDH genetic labels is expensive and costly, resulting in a limited number of IDH mutation data for modeling. To comprehensively address these problems, we propose a fully automated multimodal MRI-based multi-task learning framework for simultaneous glioma segmentation and IDH genotyping. Specifically, the task correlation and heterogeneity are tackled with a hybrid CNN-Transformer encoder that consists of a convolutional neural network and a transformer to extract the shared spatial and global information learned from a decoder for glioma segmentation and a multi-scale classifier for IDH genotyping. Then, a multi-task learning loss is designed to balance the two tasks by combining the segmentation and classification loss functions with uncertain weights. Finally, an uncertainty-aware pseudo-label selection is proposed to generate IDH pseudo-labels from larger unlabeled data for improving the accuracy of IDH genotyping by using semi-supervised learning. We evaluate our method on a multi-institutional public dataset. Experimental results show that our proposed multi-task network achieves promising performance and outperforms the single-task learning counterparts and other existing state-of-the-art methods. With the introduction of unlabeled data, the semi-supervised multi-task learning framework further improves the performance of glioma segmentation and IDH genotyping. The source codes of our framework are publicly available at https://github.com/miacsu/MTTU-Net.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
脑洞疼应助Sherry采纳,获得10
2秒前
3秒前
3秒前
LJH完成签到,获得积分20
3秒前
yu777完成签到,获得积分10
3秒前
3秒前
正直敏完成签到,获得积分10
4秒前
6秒前
123456发布了新的文献求助10
7秒前
Gufer完成签到,获得积分10
7秒前
blue发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
相识完成签到,获得积分10
10秒前
博雅完成签到,获得积分10
12秒前
橘猫爱笑完成签到 ,获得积分10
12秒前
13秒前
小二郎应助blueweier采纳,获得10
13秒前
13秒前
希望天下0贩的0应助justice采纳,获得10
15秒前
子车茗应助123456采纳,获得20
17秒前
blue完成签到,获得积分10
17秒前
靓丽谷南发布了新的文献求助10
17秒前
慕薯殿焚发布了新的文献求助10
19秒前
su完成签到 ,获得积分10
20秒前
amier完成签到,获得积分10
20秒前
猪猪hero应助负责的方盒采纳,获得10
21秒前
21秒前
22秒前
小二郎应助诗蕊采纳,获得20
23秒前
24秒前
amier发布了新的文献求助10
26秒前
打打应助平淡的灰阶采纳,获得10
26秒前
共享精神应助正直敏采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
CodeCraft应助贪玩初彤采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153