肿瘤微环境
血管生成
细胞外基质
免疫系统
癌症研究
药物输送
癌细胞
癌症
化学
医学
细胞生物学
免疫学
生物
内科学
有机化学
作者
Dasom Kim,Kyeong Seob Hwang,Eun U Seo,Suyoung Seo,Byung Chul Lee,Nakwon Choi,Jonghoon Choi,Hong Nam Kim
标识
DOI:10.1002/adhm.202102581
摘要
The tumor microenvironment (TME) is the environment around the tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix (ECM). Owing to its component interactions, the TME influences tumor growth and drug delivery in a highly complex manner. Although several vascularized cancer models are developed to mimic the TME in vitro, these models cannot comprehensively reflect blood vessel-tumor spheroid interactions. Here, a method for inducing controlled tumor angiogenesis by engineering the microenvironment is presented. The interstitial flow direction regulates the direction of capillary sprouting, showing that angiogenesis occurs in the opposite direction of flow, while the existence of lung fibroblasts affects the continuity and lumen formation of sprouted capillaries. The vascularized tumor model shows enhanced delivery of anticancer drugs and immune cells to the tumor spheroids because of the perfusable vascular networks. The possibility of capillary embolism using anticancer drug-conjugated liquid metal nanoparticles is investigated using the vascularized tumor model. This vascularized tumor platform can aid in the development of effective anticancer drugs and cancer immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI