多光谱图像
计算机科学
计算
频道(广播)
上下文图像分类
人工神经网络
二进制数
模式识别(心理学)
人工智能
二元分类
卷积神经网络
图像(数学)
数据挖掘
算法
支持向量机
计算机网络
算术
数学
作者
Weipeng Jing,Xu Zhang,Jian Wang,Donglin Di,Guangsheng Chen,Houbing Song
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:19: 1-5
被引量:7
标识
DOI:10.1109/lgrs.2022.3161360
摘要
Compared with traditional images, multispectral images (MSIs) contain more spectral bands and higher data dimensions. The existing MSI classification model has high computational complexity and consumes a lot of computing resources. In this letter, we propose a lightweight multispectral classification method named CABNN based on binary neural networks (BNNs) to effectively have a trade-off between model performance and computational cost. First, we modify and binarize the MobileNetV1 network and add almost computation-free shortcuts to enhance the expressive capability. Secondly, since the BNN is sensitive to the distribution of activation functions, we introduce RPReLU with learnable coefficients to automatically adjust activation distribution at almost no extra cost. Lastly, considering that MSIs have multiple channels, we utilize an efficient channel attention (ECA) module to assign different weights to each channel to concentrate on crucial features and suppress insignificant features. We conduct experiments on four public MSI datasets, including NaSC-TG2, EuroSAT, GID Fine land-cover classification, and UC Merced Land Use. Extensive experiments demonstrate that the proposed CABNN has higher efficiency and better comprehensive performance than the state-of-the-art methods across the board.
科研通智能强力驱动
Strongly Powered by AbleSci AI