Augmented Graph Neural Network with hierarchical global-based residual connections

计算机科学 联营 残余物 理论计算机科学 图形 人工神经网络 平滑的 图形属性 人工智能 算法 折线图 电压图 计算机视觉
作者
Asmaa Rassil,Hiba Chougrad,Hamid Zouaki
出处
期刊:Neural Networks [Elsevier]
卷期号:150: 149-166 被引量:13
标识
DOI:10.1016/j.neunet.2022.03.008
摘要

Graph Neural Networks (GNNs) are powerful architectures for learning on graphs. They are efficient for predicting nodes, links and graphs properties. Standard GNN variants follow a message passing schema to update nodes representations using information from higher-order neighborhoods iteratively. Consequently, deeper GNNs make it possible to define high-level nodes representations generated based on local as well as distant neighborhoods. However, deeper networks are prone to suffer from over-smoothing. To build deeper GNN architectures and avoid losing the dependency between lower (the layers closer to the input) and higher (the layers closer to the output) layers, networks can integrate residual connections to connect intermediate layers. We propose the Augmented Graph Neural Network (AGNN) model with hierarchical global-based residual connections. Using the proposed residual connections, the model generates high-level nodes representations without the need for a deeper architecture. We disclose that the nodes representations generated through our proposed AGNN model are able to define an expressive all-encompassing representation of the entire graph. As such, the graph predictions generated through the AGNN model surpass considerably state-of-the-art results. Moreover, we carry out extensive experiments to identify the best global pooling strategy and attention weights to define the adequate hierarchical and global-based residual connections for different graph property prediction tasks. Furthermore, we propose a reversible variant of the AGNN model to address the extensive memory consumption problem that typically arises from training networks on large and dense graph datasets. The proposed Reversible Augmented Graph Neural Network (R-AGNN) only stores the nodes representations acquired from the output layer as opposed to saving all representations from intermediate layers as it is conventionally done when optimizing the parameters of other GNNs. We further refine the definition of the backpropagation algorithm to fit the R-AGNN model. We evaluate the proposed models AGNN and R-AGNN on benchmark Molecular, Bioinformatics and Social Networks datasets for graph classification and achieve state-of-the-art results. For instance the AGNN model realizes improvements of +39% on IMDB-MULTI reaching 91.7% accuracy and +16% on COLLAB reaching 96.8% accuracy compared to other GNN variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda发布了新的文献求助30
2秒前
fzh发布了新的文献求助10
4秒前
tao完成签到 ,获得积分10
6秒前
6秒前
6秒前
古藤完成签到 ,获得积分10
7秒前
wangyf完成签到,获得积分10
8秒前
jevon应助小鹿采纳,获得10
8秒前
9秒前
9秒前
9秒前
二狗完成签到,获得积分10
10秒前
华仔应助卿qing采纳,获得10
10秒前
11秒前
12秒前
徐裘完成签到,获得积分10
12秒前
13秒前
呆萌小珍发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
在水一方应助叶子采纳,获得10
15秒前
蔚欢发布了新的文献求助10
15秒前
天天快乐应助Red采纳,获得10
16秒前
17秒前
17秒前
烟花应助科研通管家采纳,获得10
18秒前
靓丽宛亦应助科研通管家采纳,获得10
19秒前
123456应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得30
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
研友_Zzrx6Z发布了新的文献求助10
19秒前
19秒前
B612小行星发布了新的文献求助10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264677
求助须知:如何正确求助?哪些是违规求助? 2904671
关于积分的说明 8331143
捐赠科研通 2574954
什么是DOI,文献DOI怎么找? 1399601
科研通“疑难数据库(出版商)”最低求助积分说明 654521
邀请新用户注册赠送积分活动 633205