Augmented Graph Neural Network with hierarchical global-based residual connections

计算机科学 联营 残余物 理论计算机科学 图形 人工神经网络 平滑的 图形属性 人工智能 算法 折线图 电压图 计算机视觉
作者
Asmaa Rassil,Hiba Chougrad,Hamid Zouaki
出处
期刊:Neural Networks [Elsevier BV]
卷期号:150: 149-166 被引量:16
标识
DOI:10.1016/j.neunet.2022.03.008
摘要

Graph Neural Networks (GNNs) are powerful architectures for learning on graphs. They are efficient for predicting nodes, links and graphs properties. Standard GNN variants follow a message passing schema to update nodes representations using information from higher-order neighborhoods iteratively. Consequently, deeper GNNs make it possible to define high-level nodes representations generated based on local as well as distant neighborhoods. However, deeper networks are prone to suffer from over-smoothing. To build deeper GNN architectures and avoid losing the dependency between lower (the layers closer to the input) and higher (the layers closer to the output) layers, networks can integrate residual connections to connect intermediate layers. We propose the Augmented Graph Neural Network (AGNN) model with hierarchical global-based residual connections. Using the proposed residual connections, the model generates high-level nodes representations without the need for a deeper architecture. We disclose that the nodes representations generated through our proposed AGNN model are able to define an expressive all-encompassing representation of the entire graph. As such, the graph predictions generated through the AGNN model surpass considerably state-of-the-art results. Moreover, we carry out extensive experiments to identify the best global pooling strategy and attention weights to define the adequate hierarchical and global-based residual connections for different graph property prediction tasks. Furthermore, we propose a reversible variant of the AGNN model to address the extensive memory consumption problem that typically arises from training networks on large and dense graph datasets. The proposed Reversible Augmented Graph Neural Network (R-AGNN) only stores the nodes representations acquired from the output layer as opposed to saving all representations from intermediate layers as it is conventionally done when optimizing the parameters of other GNNs. We further refine the definition of the backpropagation algorithm to fit the R-AGNN model. We evaluate the proposed models AGNN and R-AGNN on benchmark Molecular, Bioinformatics and Social Networks datasets for graph classification and achieve state-of-the-art results. For instance the AGNN model realizes improvements of +39% on IMDB-MULTI reaching 91.7% accuracy and +16% on COLLAB reaching 96.8% accuracy compared to other GNN variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
vin应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
啷个里个洋完成签到,获得积分20
1秒前
咻咻发布了新的文献求助30
2秒前
2秒前
3秒前
李健的小迷弟应助Zeshan采纳,获得10
3秒前
高高芷发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
6秒前
karna完成签到,获得积分20
6秒前
6秒前
6秒前
一切顺利完成签到,获得积分10
6秒前
Cristina2024完成签到,获得积分10
9秒前
小王小王发布了新的文献求助10
10秒前
岸部发布了新的文献求助10
10秒前
XiangXu完成签到,获得积分10
10秒前
CodeCraft应助寒染雾采纳,获得10
11秒前
是一个小朋友完成签到,获得积分10
12秒前
慕青应助认真跳跳糖采纳,获得10
12秒前
karna发布了新的文献求助10
12秒前
优秀的莹发布了新的文献求助10
13秒前
香蕉觅云应助岸部采纳,获得10
13秒前
几酝完成签到,获得积分10
14秒前
谭玲慧发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176