Augmented Graph Neural Network with hierarchical global-based residual connections

计算机科学 联营 残余物 理论计算机科学 图形 人工神经网络 平滑的 图形属性 人工智能 算法 折线图 电压图 计算机视觉
作者
Asmaa Rassil,Hiba Chougrad,Hamid Zouaki
出处
期刊:Neural Networks [Elsevier]
卷期号:150: 149-166 被引量:16
标识
DOI:10.1016/j.neunet.2022.03.008
摘要

Graph Neural Networks (GNNs) are powerful architectures for learning on graphs. They are efficient for predicting nodes, links and graphs properties. Standard GNN variants follow a message passing schema to update nodes representations using information from higher-order neighborhoods iteratively. Consequently, deeper GNNs make it possible to define high-level nodes representations generated based on local as well as distant neighborhoods. However, deeper networks are prone to suffer from over-smoothing. To build deeper GNN architectures and avoid losing the dependency between lower (the layers closer to the input) and higher (the layers closer to the output) layers, networks can integrate residual connections to connect intermediate layers. We propose the Augmented Graph Neural Network (AGNN) model with hierarchical global-based residual connections. Using the proposed residual connections, the model generates high-level nodes representations without the need for a deeper architecture. We disclose that the nodes representations generated through our proposed AGNN model are able to define an expressive all-encompassing representation of the entire graph. As such, the graph predictions generated through the AGNN model surpass considerably state-of-the-art results. Moreover, we carry out extensive experiments to identify the best global pooling strategy and attention weights to define the adequate hierarchical and global-based residual connections for different graph property prediction tasks. Furthermore, we propose a reversible variant of the AGNN model to address the extensive memory consumption problem that typically arises from training networks on large and dense graph datasets. The proposed Reversible Augmented Graph Neural Network (R-AGNN) only stores the nodes representations acquired from the output layer as opposed to saving all representations from intermediate layers as it is conventionally done when optimizing the parameters of other GNNs. We further refine the definition of the backpropagation algorithm to fit the R-AGNN model. We evaluate the proposed models AGNN and R-AGNN on benchmark Molecular, Bioinformatics and Social Networks datasets for graph classification and achieve state-of-the-art results. For instance the AGNN model realizes improvements of +39% on IMDB-MULTI reaching 91.7% accuracy and +16% on COLLAB reaching 96.8% accuracy compared to other GNN variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到,获得积分10
刚刚
帕克完成签到,获得积分10
刚刚
刚刚
胍基完成签到,获得积分10
2秒前
2秒前
4秒前
dingmeijia给dingmeijia的求助进行了留言
4秒前
6秒前
8秒前
烦烦完成签到,获得积分10
8秒前
尔池发布了新的文献求助10
9秒前
orixero应助upupup采纳,获得10
9秒前
9秒前
syh完成签到,获得积分10
9秒前
9秒前
一只百味鸡完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
欣喜书易完成签到 ,获得积分10
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得80
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352