Knowledge transfer for structural damage detection through re-weighted adversarial domain adaptation

加权 计算机科学 对抗制 人工智能 过程(计算) 适应(眼睛) 学习迁移 发电机(电路理论) 领域(数学分析) 域适应 结构健康监测 机器学习 不变(物理) 数据挖掘 模式识别(心理学) 算法 数学 工程类 结构工程 分类器(UML) 数学分析 功率(物理) 物理 量子力学 光学 数学物理 操作系统 医学 放射科
作者
Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:172: 108991-108991 被引量:20
标识
DOI:10.1016/j.ymssp.2022.108991
摘要

Deep learning (DL) techniques have been developed for structural damage detection by training the network to dig damage-sensitive features from big data. However, most techniques only perform well on datasets with the same distribution as the training data. The network needs to be re-trained by re-collecting labeled data when the environmental conditions or structural sizes change. This limits the application of DL techniques to damage detection of practical structures, since many bridges may have the same topology but different sizes, whereas re-collecting labeled damaged data is expensive and often infeasible in structural health monitoring. A re-weighted adversarial domain adaptation (RADA) method is developed to generalize the network trained on one structure to others without re-collecting the labeled data. As damage is irreversible, the damage cases in structures may be different. Considering the inconsistent label spaces between the source and target domains, a weight parameter is introduced to improve the importance of the shared label space in the DA process. The RADA network learns damage-sensitive and domain-invariant features for the damage detection of the new structure by training the generator and two classifiers in an adversarial manner. The proposed method is applied to two types of knowledge transfer, namely, from one structure to the other with different sizes and from a numerical model to an experimental structure. Examples show that the RADA network significantly improves the classification accuracy in transfer learning problems with inconsistent label spaces, as compared with the networks without DA or without the re-weighting mechanism. The method can also be extended to other unsupervised classification problems with label scarcity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助jnfy采纳,获得10
2秒前
poison554发布了新的文献求助10
2秒前
3秒前
4秒前
凝雁完成签到,获得积分10
7秒前
温暖琦发布了新的文献求助10
7秒前
小二郎应助无私的定帮采纳,获得10
8秒前
9秒前
9秒前
CodeCraft应助化学元素采纳,获得10
11秒前
渣渣XM发布了新的文献求助10
11秒前
赘婿应助RC_Wang采纳,获得10
13秒前
文静千凡发布了新的文献求助10
13秒前
H_不甜也是糖完成签到,获得积分10
15秒前
YY发布了新的文献求助10
16秒前
温暖琦完成签到,获得积分10
16秒前
17秒前
野性的枕头完成签到,获得积分10
19秒前
闪闪溪流完成签到,获得积分10
20秒前
洋洋发布了新的文献求助10
21秒前
hhhhh完成签到,获得积分10
21秒前
领导范儿应助NEO采纳,获得10
21秒前
大气的山彤完成签到,获得积分10
22秒前
23秒前
大模型应助YY采纳,获得10
24秒前
小马甲应助H_不甜也是糖采纳,获得10
24秒前
24秒前
26秒前
CipherSage应助洋洋采纳,获得10
26秒前
完美世界应助帅哥采纳,获得10
27秒前
LXL关闭了LXL文献求助
27秒前
DrQin发布了新的文献求助10
27秒前
cjcslhp2468发布了新的文献求助10
29秒前
basepair发布了新的文献求助10
30秒前
YY完成签到,获得积分20
30秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
whichwhy完成签到,获得积分10
32秒前
32秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309