Knowledge transfer for structural damage detection through re-weighted adversarial domain adaptation

加权 计算机科学 对抗制 人工智能 过程(计算) 适应(眼睛) 学习迁移 发电机(电路理论) 领域(数学分析) 域适应 结构健康监测 机器学习 不变(物理) 数据挖掘 模式识别(心理学) 算法 数学 工程类 结构工程 分类器(UML) 数学分析 放射科 物理 光学 操作系统 功率(物理) 医学 量子力学 数学物理
作者
Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 108991-108991 被引量:20
标识
DOI:10.1016/j.ymssp.2022.108991
摘要

Deep learning (DL) techniques have been developed for structural damage detection by training the network to dig damage-sensitive features from big data. However, most techniques only perform well on datasets with the same distribution as the training data. The network needs to be re-trained by re-collecting labeled data when the environmental conditions or structural sizes change. This limits the application of DL techniques to damage detection of practical structures, since many bridges may have the same topology but different sizes, whereas re-collecting labeled damaged data is expensive and often infeasible in structural health monitoring. A re-weighted adversarial domain adaptation (RADA) method is developed to generalize the network trained on one structure to others without re-collecting the labeled data. As damage is irreversible, the damage cases in structures may be different. Considering the inconsistent label spaces between the source and target domains, a weight parameter is introduced to improve the importance of the shared label space in the DA process. The RADA network learns damage-sensitive and domain-invariant features for the damage detection of the new structure by training the generator and two classifiers in an adversarial manner. The proposed method is applied to two types of knowledge transfer, namely, from one structure to the other with different sizes and from a numerical model to an experimental structure. Examples show that the RADA network significantly improves the classification accuracy in transfer learning problems with inconsistent label spaces, as compared with the networks without DA or without the re-weighting mechanism. The method can also be extended to other unsupervised classification problems with label scarcity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrW完成签到,获得积分10
刚刚
1秒前
1秒前
jjjwln完成签到,获得积分10
2秒前
2秒前
Kay76完成签到,获得积分10
2秒前
想飞的猪完成签到,获得积分10
2秒前
岁月如酒完成签到,获得积分10
2秒前
喜悦的飞机完成签到,获得积分10
2秒前
phil完成签到,获得积分10
2秒前
鹿lu完成签到 ,获得积分10
2秒前
文瑄完成签到 ,获得积分10
3秒前
vv123456ha完成签到,获得积分10
3秒前
学术骗子小刚完成签到,获得积分10
3秒前
seq001完成签到,获得积分10
3秒前
祖诗云完成签到,获得积分10
3秒前
duoduo完成签到,获得积分10
3秒前
细心的向日葵完成签到,获得积分10
4秒前
周婷完成签到,获得积分20
4秒前
5秒前
乐乐发布了新的文献求助10
5秒前
5秒前
追寻梦松完成签到,获得积分10
6秒前
7秒前
123完成签到,获得积分10
8秒前
christinaMarsh完成签到,获得积分10
9秒前
周婷发布了新的文献求助10
9秒前
chendumo完成签到,获得积分10
9秒前
9秒前
Chen发布了新的文献求助10
10秒前
日月星完成签到,获得积分10
10秒前
旺旺碎完成签到 ,获得积分10
11秒前
短短长又长完成签到,获得积分10
11秒前
我我我完成签到,获得积分10
12秒前
妙奇完成签到,获得积分10
12秒前
woobinhua完成签到,获得积分10
14秒前
偷书贼完成签到,获得积分10
14秒前
北执完成签到,获得积分10
15秒前
15秒前
renjiu完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443