已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities

骨关节炎 医学 骨质疏松症 再生(生物学) 纳米技术 病理 材料科学 生物 替代医学 细胞生物学
作者
Zhongyang Zhang,Jun Zhou,Chuang LIU,Jiaming Zhang,Yo Shibata,Na Kong,Claudia Corbo,Mitchel B. Harris,Wei Tao
出处
期刊:Trends in chemistry [Elsevier]
卷期号:4 (5): 420-436 被引量:40
标识
DOI:10.1016/j.trechm.2022.02.002
摘要

Emerging bio-nanotechnology has greatly favored the innovation of orthopedic therapies through more comprehensive mimicry of native bone tissue. More detailed depictions on bone biophysiology, pathogenesis, and progression of diverse bone diseases promote optimization of disease-specific therapy by biomimetic nanotechnology. Biomimetic integration of structure, composition, biomineralization, cells, biochemical, and biomechanical factors is vital for developing artificial constructs for healing bone and cartilage defects. Surface functionalization with biomimetic features can endow nanocarriers with improved biocompatibility, targeting capability, and better therapeutic efficiency for delivering therapeutic agents in curing bone tumor, inflammatory, infection, and osteoporosis. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. the ability developed by microbes to protect them from antimicrobial treatments (e.g., antibiotics). harvesting a substituted bone graft from a donor area of the patient. a complex structure composed of one or more microbial cells and an extracellular polymeric matrix, generally adhering to a surface. participates in inhibition of the Wnt signaling pathway. a membrane-bound extracellular vesicle loaded with proteins, lipids, or nucleic acids of cells. a complex 3D network that is mainly composed of macromolecules (e.g., collagen, glycoproteins) and minerals (e.g., hydroxyapatite) for biochemically and structurally supporting cells. stromal cells capable of multipotent differentiation into various cell types; they can be harvested from bone marrow, adipose tissue, umbilical cord, etc. a peptide hormone that can regulate the calcium concentration in serum and thus will activate osteoclast to resorb bone matrix and release more calcium ions when serum calcium is low. a member of tumor necrosis factor that regulates apoptosis and participates in modulating immune response and bone regeneration. a solution with formulated ionic concentrations that mimic those of human blood plasma. removal of normal loads will hinder bone remodeling, leading to decreased bone density and strength. a significant increase of structure stiffness in response to a stress beyond critical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa完成签到,获得积分10
2秒前
尼可刹米洛贝林完成签到,获得积分10
4秒前
小白白白完成签到 ,获得积分10
6秒前
无限的寄真完成签到 ,获得积分10
8秒前
10秒前
11秒前
缓慢墨镜发布了新的文献求助20
13秒前
ding应助lalala采纳,获得30
15秒前
饱满语风完成签到 ,获得积分10
17秒前
不赖床的科研狗完成签到,获得积分10
20秒前
evelyn完成签到 ,获得积分10
20秒前
吴嘉俊完成签到 ,获得积分10
21秒前
25秒前
28秒前
Lucas应助朴素夜梦采纳,获得10
28秒前
30秒前
30秒前
辛勤晓旋完成签到,获得积分10
31秒前
一一发布了新的文献求助10
33秒前
李某完成签到 ,获得积分10
34秒前
nuomi发布了新的文献求助10
35秒前
37秒前
聪明小于完成签到,获得积分10
38秒前
852应助nuomi采纳,获得10
42秒前
45秒前
小鱼吐泡泡完成签到 ,获得积分10
46秒前
lalala发布了新的文献求助30
51秒前
qingshan完成签到,获得积分10
54秒前
田様应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
顾矜应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
蓝色条纹衫完成签到 ,获得积分10
58秒前
慕青应助童童采纳,获得10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
1分钟前
一朵会长树的花完成签到,获得积分10
1分钟前
橙橙完成签到,获得积分10
1分钟前
最蠢的讨厌鬼完成签到,获得积分10
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213078
求助须知:如何正确求助?哪些是违规求助? 2861888
关于积分的说明 8130856
捐赠科研通 2527823
什么是DOI,文献DOI怎么找? 1361707
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615849