Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities

骨关节炎 医学 骨质疏松症 再生(生物学) 纳米技术 病理 材料科学 生物 替代医学 细胞生物学
作者
Zhongyang Zhang,Jun Zhou,Chuang LIU,Jiaming Zhang,Yo Shibata,Na Kong,Claudia Corbo,Mitchel B. Harris,Wei Tao
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:4 (5): 420-436 被引量:49
标识
DOI:10.1016/j.trechm.2022.02.002
摘要

Emerging bio-nanotechnology has greatly favored the innovation of orthopedic therapies through more comprehensive mimicry of native bone tissue. More detailed depictions on bone biophysiology, pathogenesis, and progression of diverse bone diseases promote optimization of disease-specific therapy by biomimetic nanotechnology. Biomimetic integration of structure, composition, biomineralization, cells, biochemical, and biomechanical factors is vital for developing artificial constructs for healing bone and cartilage defects. Surface functionalization with biomimetic features can endow nanocarriers with improved biocompatibility, targeting capability, and better therapeutic efficiency for delivering therapeutic agents in curing bone tumor, inflammatory, infection, and osteoporosis. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. the ability developed by microbes to protect them from antimicrobial treatments (e.g., antibiotics). harvesting a substituted bone graft from a donor area of the patient. a complex structure composed of one or more microbial cells and an extracellular polymeric matrix, generally adhering to a surface. participates in inhibition of the Wnt signaling pathway. a membrane-bound extracellular vesicle loaded with proteins, lipids, or nucleic acids of cells. a complex 3D network that is mainly composed of macromolecules (e.g., collagen, glycoproteins) and minerals (e.g., hydroxyapatite) for biochemically and structurally supporting cells. stromal cells capable of multipotent differentiation into various cell types; they can be harvested from bone marrow, adipose tissue, umbilical cord, etc. a peptide hormone that can regulate the calcium concentration in serum and thus will activate osteoclast to resorb bone matrix and release more calcium ions when serum calcium is low. a member of tumor necrosis factor that regulates apoptosis and participates in modulating immune response and bone regeneration. a solution with formulated ionic concentrations that mimic those of human blood plasma. removal of normal loads will hinder bone remodeling, leading to decreased bone density and strength. a significant increase of structure stiffness in response to a stress beyond critical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peng完成签到 ,获得积分10
1秒前
4秒前
包子牛奶完成签到,获得积分10
6秒前
6秒前
ghjghk完成签到,获得积分20
8秒前
李爱国应助lgj采纳,获得10
9秒前
11秒前
xiaofenzi完成签到,获得积分10
12秒前
干净思远完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
拓跋涵易完成签到,获得积分10
17秒前
18秒前
KK完成签到,获得积分10
19秒前
荼白完成签到 ,获得积分10
22秒前
wy0409完成签到,获得积分10
23秒前
25秒前
寒水完成签到 ,获得积分10
25秒前
宝玉完成签到 ,获得积分20
27秒前
陆程文完成签到,获得积分10
28秒前
浮游应助Bella采纳,获得10
29秒前
31秒前
35秒前
CodeCraft应助gro_ele采纳,获得10
36秒前
量子星尘发布了新的文献求助30
37秒前
真实的钢笔完成签到,获得积分10
38秒前
滑腻腻的小鱼完成签到,获得积分20
39秒前
大佬完成签到,获得积分10
40秒前
41秒前
42秒前
43秒前
Arctic完成签到 ,获得积分10
43秒前
44秒前
WittingGU完成签到,获得积分0
45秒前
45秒前
洛歌完成签到 ,获得积分10
46秒前
lgj发布了新的文献求助10
48秒前
皮皮虾完成签到 ,获得积分10
49秒前
gro_ele发布了新的文献求助10
49秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044644
求助须知:如何正确求助?哪些是违规求助? 4274226
关于积分的说明 13323416
捐赠科研通 4087927
什么是DOI,文献DOI怎么找? 2236588
邀请新用户注册赠送积分活动 1244008
关于科研通互助平台的介绍 1172033