Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities

骨关节炎 医学 骨质疏松症 再生(生物学) 纳米技术 病理 材料科学 生物 替代医学 细胞生物学
作者
Zhongyang Zhang,Jun Zhou,Chuang LIU,Jiaming Zhang,Yo Shibata,Na Kong,Claudia Corbo,Mitchel B. Harris,Wei Tao
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:4 (5): 420-436 被引量:49
标识
DOI:10.1016/j.trechm.2022.02.002
摘要

Emerging bio-nanotechnology has greatly favored the innovation of orthopedic therapies through more comprehensive mimicry of native bone tissue. More detailed depictions on bone biophysiology, pathogenesis, and progression of diverse bone diseases promote optimization of disease-specific therapy by biomimetic nanotechnology. Biomimetic integration of structure, composition, biomineralization, cells, biochemical, and biomechanical factors is vital for developing artificial constructs for healing bone and cartilage defects. Surface functionalization with biomimetic features can endow nanocarriers with improved biocompatibility, targeting capability, and better therapeutic efficiency for delivering therapeutic agents in curing bone tumor, inflammatory, infection, and osteoporosis. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. Orthopedic diseases (e.g., fracture, bone tumor, osteoarthritis, osteoporosis, chronic inflammation, and infection) can result in locomotion disability, loss of protection for other soft tissues/organs, or dysfunction of hematopoiesis, mineral homeostasis, and other functions. The development of biomimetic nanotechnology has advanced the innovation of orthopedic therapies for restoring the structure, composition, and biophysiological functions of the natural bone tissue. Identification of the pathogenesis and understanding the disease progression can greatly benefit the design and optimization of disease-specific therapy. Herein, we summarize guidelines on how biomimetic nanotechnology can be utilized in more efficiently treating various orthopedic diseases. We also discuss unmet needs and current challenges that might hinder the clinical implementation of biomimetic nanotechnology-based orthopedic therapies. the ability developed by microbes to protect them from antimicrobial treatments (e.g., antibiotics). harvesting a substituted bone graft from a donor area of the patient. a complex structure composed of one or more microbial cells and an extracellular polymeric matrix, generally adhering to a surface. participates in inhibition of the Wnt signaling pathway. a membrane-bound extracellular vesicle loaded with proteins, lipids, or nucleic acids of cells. a complex 3D network that is mainly composed of macromolecules (e.g., collagen, glycoproteins) and minerals (e.g., hydroxyapatite) for biochemically and structurally supporting cells. stromal cells capable of multipotent differentiation into various cell types; they can be harvested from bone marrow, adipose tissue, umbilical cord, etc. a peptide hormone that can regulate the calcium concentration in serum and thus will activate osteoclast to resorb bone matrix and release more calcium ions when serum calcium is low. a member of tumor necrosis factor that regulates apoptosis and participates in modulating immune response and bone regeneration. a solution with formulated ionic concentrations that mimic those of human blood plasma. removal of normal loads will hinder bone remodeling, leading to decreased bone density and strength. a significant increase of structure stiffness in response to a stress beyond critical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小胡发布了新的文献求助10
刚刚
刚刚
Cc发布了新的文献求助10
刚刚
1秒前
从容追命发布了新的文献求助30
1秒前
淡定发布了新的文献求助10
1秒前
李健应助justin采纳,获得10
2秒前
zero_two完成签到,获得积分10
2秒前
2秒前
逆时针完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
热心子轩完成签到,获得积分10
5秒前
Y奥完成签到,获得积分10
5秒前
XHH1994发布了新的文献求助10
5秒前
齐小妮发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
隐形曼青应助柏林肥鱼卷采纳,获得10
6秒前
6秒前
Akim应助47采纳,获得10
6秒前
思源应助风清扬采纳,获得10
7秒前
量子星尘发布了新的文献求助50
7秒前
猪丢了完成签到 ,获得积分10
7秒前
7秒前
7秒前
牧之发布了新的文献求助10
7秒前
8秒前
馆长应助liu采纳,获得30
8秒前
科研通AI5应助飞飞采纳,获得10
8秒前
9秒前
9秒前
9秒前
无花果应助负责石头采纳,获得10
9秒前
刘厚麟发布了新的文献求助10
9秒前
Achen发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646