OCtS: an alternative of the t-Score method sensitive to outliers and correlation in feature selection

人工智能 Boosting(机器学习) 特征选择 随机森林 离群值 集成学习 计算机科学 梯度升压 预处理器 机器学习 相关性 模式识别(心理学) 统计分类 特征(语言学) 数据预处理 数学 语言学 哲学 几何学
作者
Mert Demirarslan,Aslı Süner
出处
期刊:Communications in Statistics - Simulation and Computation [Informa]
卷期号:53 (3): 1409-1422
标识
DOI:10.1080/03610918.2022.2046087
摘要

A wide range of issues including missing values, class noise, class imbalance, outliers, correlation and irrelevant variables have the potential to negatively affect the overall performance of disease diagnosis classification algorithms. This study proposes a new technique, alternative to the t-Score method, to increase the performance of ensemble learning classification algorithms by removing irrelevant variables. Therefore, three publicly available datasets from medical domain varying in their sample sizes, number of variables, and data preprocessing problems were selected and processed with our newly proposed feature selection method called Outliers and Correlation t-Score (OCtS). Afterwards, six widely used ensemble learning algorithms including Random Forest, Gradient Boosting Machine, Extreme Gradient Boosting Machine, Light Gradient Boosting Machine, CatBoost, and Bagging were employed for disease diagnosis classification, and performance metrics were measured. Our results indicate that the classification performance of six ensemble learning algorithms significantly increased when the OCtS method was employed, and our feature selection method, OCtS, exhibited higher performance compared to the standard t-score method across all datasets (p = 0.0001). We conclude that, using data preprocessing methods with OCtS offers better algorithm performance when employing ensemble learning algorithms in disease diagnosis classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_LMNjkn完成签到,获得积分10
2秒前
Liu完成签到,获得积分10
2秒前
2秒前
夏日天空完成签到,获得积分10
3秒前
CodeCraft应助lkc采纳,获得10
3秒前
cheng发布了新的文献求助10
3秒前
Hello应助科研小白菜采纳,获得10
4秒前
Eve发布了新的文献求助10
4秒前
花见月开完成签到,获得积分10
5秒前
思源应助uu采纳,获得10
5秒前
共享精神应助喜悦成威采纳,获得20
6秒前
赵赵赵发布了新的文献求助10
6秒前
打打应助特兰克斯采纳,获得10
7秒前
7秒前
xtqgyy完成签到,获得积分10
7秒前
游尘完成签到 ,获得积分10
7秒前
8秒前
HJJHJH发布了新的文献求助10
9秒前
10秒前
Orange应助拉长的忆南采纳,获得30
10秒前
11秒前
一一发布了新的文献求助10
11秒前
悦耳水之完成签到,获得积分10
13秒前
13秒前
ding应助灵巧荆采纳,获得10
14秒前
14秒前
绿色完成签到,获得积分10
14秒前
张无忌完成签到,获得积分10
15秒前
16秒前
16秒前
绿色发布了新的文献求助10
17秒前
18秒前
Eve完成签到,获得积分10
18秒前
有益发布了新的文献求助10
18秒前
啦啦啦完成签到,获得积分10
19秒前
cheng完成签到,获得积分10
19秒前
19秒前
thk1234完成签到,获得积分10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794