火用
能值
可用能
工艺工程
环境科学
工程类
太阳能
环境工程
作者
M. Nourpour,Reza Shojaei Ghadikolaei,A. Pirozfar,M. Delpisheh
标识
DOI:10.1177/0958305x211063558
摘要
The high amount of solar energy as clean and sustainable energy has increased awareness in solar energy concentration, especially in integrated concepts. One of the best and promising hybrid configurations for converting solar energy into power is an integrated solar combined cycle system (ISCCS). In this study, conventional and advanced analysis tools for the ISCCS located in Yazd (Iran) have been investigated. In this paper, thermodynamic simulation, exergy, exergoeconomic, and exergoenvironmental analysis based on Life Cycle Assessment (LCA) have been performed. In addition, an emergy-based concept, including emergoeconomic and emergoenvironmental assessment, has been performed. In-depth analysis of exergy, exergoeconomic, and exergoenvironmental modelling, advanced exergy analysis based on endogenous/exogenous and avoidable/unavoidable parts have been done. In this regard, MATLAB code has been developed for thermodynamic simulation, exergy, exergoeconomic, exergoenvironment, emergoeconomic and emergoenvironment analysis. Furthermore, THERMOFLEX (commercial software) applied for thermodynamic simulation and verification. The Sankey diagram based on each analysis tool has been constructed. Furthermore, the priority of improvement based on each analysis has been identified. The thermal efficiency and net power generation of ISCCS are 48.25% and 419600 kW, respectively. It was obsereved that in most equipment, less than 10% of exergy destruction and cost and environmental impact rates were avoidable/endogenous.
科研通智能强力驱动
Strongly Powered by AbleSci AI