已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accuracy improvement on quantitative analysis of the total iron content in branded iron ores by laser-induced breakdown spectroscopy combined with the double back propagation artificial neural network

激光诱导击穿光谱 单变量 铁矿石 人工神经网络 相关系数 多元统计 均方误差 反向传播 内容(测量理论) 偏最小二乘回归 化学 铸铁 光谱学 分析化学(期刊) 冶金 数学 材料科学 人工智能 统计 色谱法 计算机科学 数学分析 物理 量子力学
作者
Piao Su,Shu Liu,Hong Ki Min,Yarui An,Chenglin Yan,Chen Li
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:14 (4): 427-437 被引量:17
标识
DOI:10.1039/d1ay01881g
摘要

The rapid and accurate quantitative analysis of the total iron (TFe) content in iron ores is extremely important in global iron ore trade. Due to the matrix effect among iron ores from different origins, it is a major challenge to accurately determine the TFe content of iron ores by laser-induced breakdown spectroscopy (LIBS). The double back propagation artificial neural network (DBP-ANN) proposed in this paper provides a solution to improve the accuracy of LIBS in determining the TFe content of branded iron ores, which is a combination of pattern recognition and regression analysis based on BP-ANN. In this study, LIBS spectra of 80 batches of representative iron ore samples from 4 brands were collected. The univariate regression methods based on brand-independent and brand-hybrid were analyzed and compared for determining the TFe content of branded iron ores, and the multivariate model based on DBP-ANN was constructed for the first time. BP-ANN was employed to establish different quantitative models of the TFe content of each type of brand after brand classification of iron ores based on the BP-ANN algorithm. Compared with the brand-hybrid BP-ANN, the coefficient of determination (R2) of the test samples using DBP-ANN increased from 0.972 to 0.996, and the root mean square error of prediction (RMSEP) and the average relative error of prediction (AREP) were reduced from 0.456 wt% and 0.584% to 0.177 wt% and 0.228% respectively. Moreover, the prediction error based on the DBP-ANN model was within the error range (<0.275 wt%) accepted by the traditional chemical analysis method GB/T 6730.5-2009. Meanwhile, the established DBP-ANN method was also compared with the common multivariate method, and it showed better analytical performance. The results showed that LIBS combined with DBP-ANN has the potential to achieve rapid and accurate analysis of the TFe content of branded iron ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
ddfighting完成签到,获得积分10
4秒前
yang发布了新的文献求助10
5秒前
5秒前
文献小白完成签到,获得积分10
5秒前
6秒前
顺利毕业发布了新的文献求助10
7秒前
7秒前
zyl发布了新的文献求助10
8秒前
8秒前
9秒前
kyf完成签到,获得积分10
10秒前
苏素肃发布了新的文献求助10
11秒前
yss发布了新的文献求助10
13秒前
14秒前
348847119发布了新的文献求助10
15秒前
17秒前
燚槿完成签到 ,获得积分10
18秒前
顺利毕业完成签到,获得积分10
18秒前
yy发布了新的文献求助10
18秒前
20秒前
谦让芷蕊完成签到 ,获得积分10
21秒前
thirty完成签到,获得积分10
22秒前
田様应助348847119采纳,获得10
24秒前
廉锦枫发布了新的文献求助10
25秒前
隐形的雪碧完成签到,获得积分10
25秒前
27秒前
完美的诗云完成签到,获得积分20
27秒前
28秒前
28秒前
水杯没水了完成签到,获得积分10
30秒前
彭于晏应助科研实习生采纳,获得10
32秒前
cornelia发布了新的文献求助10
33秒前
34秒前
高高尔蓉给高高尔蓉的求助进行了留言
35秒前
木木杉发布了新的文献求助10
37秒前
39秒前
顾矜应助水杯没水了采纳,获得10
39秒前
hia发布了新的文献求助30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322726
求助须知:如何正确求助?哪些是违规求助? 4464117
关于积分的说明 13892377
捐赠科研通 4355535
什么是DOI,文献DOI怎么找? 2392378
邀请新用户注册赠送积分活动 1386013
关于科研通互助平台的介绍 1355810