亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accuracy improvement on quantitative analysis of the total iron content in branded iron ores by laser-induced breakdown spectroscopy combined with the double back propagation artificial neural network

激光诱导击穿光谱 单变量 铁矿石 人工神经网络 相关系数 多元统计 均方误差 反向传播 内容(测量理论) 偏最小二乘回归 化学 铸铁 光谱学 分析化学(期刊) 冶金 数学 材料科学 人工智能 统计 色谱法 计算机科学 数学分析 物理 量子力学
作者
Piao Su,Shu Liu,Hong Ki Min,Yarui An,Chenglin Yan,Chen Li
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:14 (4): 427-437 被引量:17
标识
DOI:10.1039/d1ay01881g
摘要

The rapid and accurate quantitative analysis of the total iron (TFe) content in iron ores is extremely important in global iron ore trade. Due to the matrix effect among iron ores from different origins, it is a major challenge to accurately determine the TFe content of iron ores by laser-induced breakdown spectroscopy (LIBS). The double back propagation artificial neural network (DBP-ANN) proposed in this paper provides a solution to improve the accuracy of LIBS in determining the TFe content of branded iron ores, which is a combination of pattern recognition and regression analysis based on BP-ANN. In this study, LIBS spectra of 80 batches of representative iron ore samples from 4 brands were collected. The univariate regression methods based on brand-independent and brand-hybrid were analyzed and compared for determining the TFe content of branded iron ores, and the multivariate model based on DBP-ANN was constructed for the first time. BP-ANN was employed to establish different quantitative models of the TFe content of each type of brand after brand classification of iron ores based on the BP-ANN algorithm. Compared with the brand-hybrid BP-ANN, the coefficient of determination (R2) of the test samples using DBP-ANN increased from 0.972 to 0.996, and the root mean square error of prediction (RMSEP) and the average relative error of prediction (AREP) were reduced from 0.456 wt% and 0.584% to 0.177 wt% and 0.228% respectively. Moreover, the prediction error based on the DBP-ANN model was within the error range (<0.275 wt%) accepted by the traditional chemical analysis method GB/T 6730.5-2009. Meanwhile, the established DBP-ANN method was also compared with the common multivariate method, and it showed better analytical performance. The results showed that LIBS combined with DBP-ANN has the potential to achieve rapid and accurate analysis of the TFe content of branded iron ores.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn完成签到,获得积分10
1秒前
6秒前
YHF2发布了新的文献求助10
10秒前
YHF2完成签到,获得积分10
15秒前
慕青应助sxj采纳,获得10
19秒前
珈蓝完成签到,获得积分10
20秒前
29秒前
sxj发布了新的文献求助10
35秒前
啊啊啊发布了新的文献求助10
37秒前
46秒前
lod完成签到,获得积分10
53秒前
所所应助科研通管家采纳,获得30
59秒前
Ava应助科研通管家采纳,获得10
59秒前
1分钟前
啊啊啊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小马2023发布了新的文献求助10
1分钟前
chandlerwong发布了新的文献求助10
1分钟前
1分钟前
氯雷他定发布了新的文献求助10
1分钟前
chandlerwong完成签到,获得积分10
1分钟前
上官若男应助sxj采纳,获得10
1分钟前
llll完成签到 ,获得积分0
1分钟前
氯雷他定完成签到,获得积分10
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
阿诺发布了新的文献求助10
1分钟前
1分钟前
眉间雪完成签到 ,获得积分20
1分钟前
天真似狮完成签到 ,获得积分10
1分钟前
sxj发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
Lucas应助阿诺采纳,获得10
1分钟前
桐夜完成签到 ,获得积分10
2分钟前
liang完成签到 ,获得积分10
2分钟前
2分钟前
隐形曼青应助稿子哥采纳,获得30
2分钟前
怡然的鱼发布了新的文献求助10
2分钟前
InsanityK发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880512
求助须知:如何正确求助?哪些是违规求助? 6573473
关于积分的说明 15689941
捐赠科研通 5000219
什么是DOI,文献DOI怎么找? 2694223
邀请新用户注册赠送积分活动 1636089
关于科研通互助平台的介绍 1593468