已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accuracy improvement on quantitative analysis of the total iron content in branded iron ores by laser-induced breakdown spectroscopy combined with the double back propagation artificial neural network

激光诱导击穿光谱 单变量 铁矿石 人工神经网络 相关系数 多元统计 均方误差 反向传播 内容(测量理论) 偏最小二乘回归 化学 铸铁 光谱学 分析化学(期刊) 冶金 数学 材料科学 人工智能 统计 色谱法 计算机科学 数学分析 物理 量子力学
作者
Piao Su,Shu Liu,Hong Ki Min,Yarui An,Chenglin Yan,Chen Li
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:14 (4): 427-437 被引量:16
标识
DOI:10.1039/d1ay01881g
摘要

The rapid and accurate quantitative analysis of the total iron (TFe) content in iron ores is extremely important in global iron ore trade. Due to the matrix effect among iron ores from different origins, it is a major challenge to accurately determine the TFe content of iron ores by laser-induced breakdown spectroscopy (LIBS). The double back propagation artificial neural network (DBP-ANN) proposed in this paper provides a solution to improve the accuracy of LIBS in determining the TFe content of branded iron ores, which is a combination of pattern recognition and regression analysis based on BP-ANN. In this study, LIBS spectra of 80 batches of representative iron ore samples from 4 brands were collected. The univariate regression methods based on brand-independent and brand-hybrid were analyzed and compared for determining the TFe content of branded iron ores, and the multivariate model based on DBP-ANN was constructed for the first time. BP-ANN was employed to establish different quantitative models of the TFe content of each type of brand after brand classification of iron ores based on the BP-ANN algorithm. Compared with the brand-hybrid BP-ANN, the coefficient of determination (R2) of the test samples using DBP-ANN increased from 0.972 to 0.996, and the root mean square error of prediction (RMSEP) and the average relative error of prediction (AREP) were reduced from 0.456 wt% and 0.584% to 0.177 wt% and 0.228% respectively. Moreover, the prediction error based on the DBP-ANN model was within the error range (<0.275 wt%) accepted by the traditional chemical analysis method GB/T 6730.5-2009. Meanwhile, the established DBP-ANN method was also compared with the common multivariate method, and it showed better analytical performance. The results showed that LIBS combined with DBP-ANN has the potential to achieve rapid and accurate analysis of the TFe content of branded iron ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的如冬完成签到,获得积分10
1秒前
冷静的莞完成签到 ,获得积分10
3秒前
魁梧的鸿煊完成签到 ,获得积分10
3秒前
zsyf完成签到,获得积分10
3秒前
。。完成签到 ,获得积分10
4秒前
迅速的念芹完成签到 ,获得积分10
5秒前
5秒前
zuhangzhao完成签到 ,获得积分10
5秒前
尊敬柏柳完成签到 ,获得积分10
7秒前
13654135090完成签到,获得积分10
8秒前
黄憨憨发布了新的文献求助10
9秒前
Hasee完成签到 ,获得积分10
10秒前
ccc完成签到 ,获得积分10
11秒前
ZeKaWa发布了新的文献求助10
11秒前
11秒前
糟糕的铁身给YI的求助进行了留言
12秒前
科研dog完成签到,获得积分10
13秒前
淡淡菠萝完成签到 ,获得积分10
13秒前
13秒前
czy完成签到 ,获得积分10
13秒前
鹏程万里发布了新的文献求助10
14秒前
kingway完成签到,获得积分20
15秒前
marchon完成签到 ,获得积分10
15秒前
哈哈完成签到 ,获得积分10
16秒前
re发布了新的文献求助10
18秒前
欣欣子完成签到 ,获得积分10
19秒前
19秒前
21秒前
大碗完成签到 ,获得积分10
22秒前
22秒前
sakiko完成签到,获得积分10
23秒前
小凯完成签到 ,获得积分10
23秒前
26秒前
糟糕的铁身给YI的求助进行了留言
26秒前
风中的丝袜完成签到,获得积分10
27秒前
逃离地球完成签到 ,获得积分10
27秒前
baiyeok发布了新的文献求助10
27秒前
rr完成签到,获得积分10
27秒前
曹文鹏完成签到 ,获得积分10
27秒前
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268485
求助须知:如何正确求助?哪些是违规求助? 2908048
关于积分的说明 8344158
捐赠科研通 2578313
什么是DOI,文献DOI怎么找? 1401979
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634359