Accuracy improvement on quantitative analysis of the total iron content in branded iron ores by laser-induced breakdown spectroscopy combined with the double back propagation artificial neural network

激光诱导击穿光谱 单变量 铁矿石 人工神经网络 相关系数 多元统计 均方误差 反向传播 内容(测量理论) 偏最小二乘回归 化学 铸铁 光谱学 分析化学(期刊) 冶金 数学 材料科学 人工智能 统计 色谱法 计算机科学 数学分析 物理 量子力学
作者
Piao Su,Shu Liu,Hong Ki Min,Yarui An,Chenglin Yan,Chen Li
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:14 (4): 427-437 被引量:17
标识
DOI:10.1039/d1ay01881g
摘要

The rapid and accurate quantitative analysis of the total iron (TFe) content in iron ores is extremely important in global iron ore trade. Due to the matrix effect among iron ores from different origins, it is a major challenge to accurately determine the TFe content of iron ores by laser-induced breakdown spectroscopy (LIBS). The double back propagation artificial neural network (DBP-ANN) proposed in this paper provides a solution to improve the accuracy of LIBS in determining the TFe content of branded iron ores, which is a combination of pattern recognition and regression analysis based on BP-ANN. In this study, LIBS spectra of 80 batches of representative iron ore samples from 4 brands were collected. The univariate regression methods based on brand-independent and brand-hybrid were analyzed and compared for determining the TFe content of branded iron ores, and the multivariate model based on DBP-ANN was constructed for the first time. BP-ANN was employed to establish different quantitative models of the TFe content of each type of brand after brand classification of iron ores based on the BP-ANN algorithm. Compared with the brand-hybrid BP-ANN, the coefficient of determination (R2) of the test samples using DBP-ANN increased from 0.972 to 0.996, and the root mean square error of prediction (RMSEP) and the average relative error of prediction (AREP) were reduced from 0.456 wt% and 0.584% to 0.177 wt% and 0.228% respectively. Moreover, the prediction error based on the DBP-ANN model was within the error range (<0.275 wt%) accepted by the traditional chemical analysis method GB/T 6730.5-2009. Meanwhile, the established DBP-ANN method was also compared with the common multivariate method, and it showed better analytical performance. The results showed that LIBS combined with DBP-ANN has the potential to achieve rapid and accurate analysis of the TFe content of branded iron ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu发布了新的文献求助30
1秒前
1秒前
实验耗材发布了新的文献求助10
1秒前
彭于晏应助猇会不会采纳,获得10
1秒前
4秒前
Lenacici发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
ALONE完成签到,获得积分10
7秒前
gx完成签到,获得积分10
7秒前
8秒前
充电宝应助好运莲莲采纳,获得10
8秒前
水濑心源完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
笙霜半夏完成签到 ,获得积分10
11秒前
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
Liu应助科研通管家采纳,获得10
11秒前
失眠夏山发布了新的文献求助10
11秒前
Water应助科研通管家采纳,获得10
11秒前
张雷应助科研通管家采纳,获得20
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
朱建军应助科研通管家采纳,获得10
12秒前
水木应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
lucas发布了新的文献求助10
12秒前
LF应助科研通管家采纳,获得30
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
追寻航空应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
充电宝应助李李采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126