Performance Evaluation of SVM with Non-Linear Kernels for EEG-based Dyslexia Detection

计算机科学 支持向量机 人工智能 模式识别(心理学) 诵读困难 语音识别 特征提取 多项式核 分类器(UML) 脑电图 机器学习 核方法 心理学 法学 精神科 政治学 阅读(过程)
作者
Shankar Parmar,Oias A. Ramwala,Chirag N. Paunwala
标识
DOI:10.1109/r10-htc53172.2021.9641696
摘要

Dyslexia is a neurodevelopmental disorder that involves difficulty in interpreting, reading, and writing but does not necessarily affect intelligence. Several behavioral symptoms have been utilized to identify Dyslexic patients. This paper proposes the analysis of EEG signals to diagnose Dyslexic people. Preprocessing the raw EEG data, feature extraction, feature grouping, and transferring particular attributes to a machine learning-based classifier are all part of the implementation. The feature grouping block has received a combination of Statistical, Hjorth, Frequency, and Katz Fractal Dimension attributes. Instead of collecting data from all channels, channels are aggregated and sent to a classifier to determine which part of the brain is engaged for a given activity, resulting in fewer electrodes for Dyslexia detection. In this work, an SVM classifier with non linear kernels is implemented. The performance of the Gaussian (RBF) Kernel, Polynomial Kernel, and Sigmoid Kernel has been evaluated. The Gaussian (RBF) Kernel produces promising results due to its decreased error rates. The deployed SVM model's performance was assessed using both speech and non-speech stimulus. This framework was examined on 391 participants, the most instances evaluated by any other researcher in the development of a feature-based machine learning technique. We attained a maximum accuracy of 62.4 percent for no-speech stimuli using the RBF Kernel, which is significant with the large dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Young发布了新的文献求助10
刚刚
小杨快看呀完成签到,获得积分10
刚刚
爆米花应助zhoucanshang采纳,获得10
1秒前
Hello应助夏尔采纳,获得10
4秒前
6秒前
yuwen完成签到,获得积分10
6秒前
9秒前
9秒前
好好好发布了新的文献求助10
10秒前
甜蜜的翠柏完成签到,获得积分10
11秒前
小刘哥加油完成签到 ,获得积分10
11秒前
汉堡包应助阿九采纳,获得10
12秒前
落后火车完成签到,获得积分10
12秒前
mengli发布了新的文献求助10
12秒前
14秒前
zt完成签到,获得积分10
14秒前
尊敬涵双发布了新的文献求助10
15秒前
paul发布了新的文献求助10
16秒前
zt发布了新的文献求助10
16秒前
落后火车发布了新的文献求助10
17秒前
小陈完成签到,获得积分10
18秒前
阿九完成签到,获得积分10
19秒前
20秒前
传奇3应助科研通管家采纳,获得10
21秒前
安静幻枫应助科研通管家采纳,获得20
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
22秒前
科研通AI2S应助Kannan采纳,获得10
22秒前
酷酷梦易发布了新的文献求助10
24秒前
25秒前
阿九发布了新的文献求助10
25秒前
梦鱼完成签到 ,获得积分10
26秒前
善学以致用应助灯没点采纳,获得10
26秒前
半柚应助落后火车采纳,获得10
27秒前
28秒前
28秒前
jackhlj完成签到,获得积分10
29秒前
29秒前
张铭杰发布了新的文献求助10
33秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Academic Capitalism and the New Economy: Markets, State, and Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375719
求助须知:如何正确求助?哪些是违规求助? 2992134
关于积分的说明 8749133
捐赠科研通 2676344
什么是DOI,文献DOI怎么找? 1466055
科研通“疑难数据库(出版商)”最低求助积分说明 678070
邀请新用户注册赠送积分活动 669768