活性氧
化学
荧光
体内
生物医学中的光声成像
生物物理学
荧光寿命成像显微镜
共轭体系
临床前影像学
光化学
生物化学
生物
聚合物
光学
物理
生物技术
有机化学
量子力学
作者
Jean Michél Merkes,Alexa Hasenbach,Fabian Kießling,Sven Hermann,Srinivas Banala
出处
期刊:ACS Sensors
[American Chemical Society]
日期:2021-12-13
卷期号:6 (12): 4379-4388
被引量:16
标识
DOI:10.1021/acssensors.1c01674
摘要
Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we report photoacoustic detection of ROS using conjugated BODIPY probes (ROS-BODIPYs). The ROS reaction with conjugated BODIPYs induced a redshift in absorption by ∼100 nm into the near infrared (from ∼700 to ∼800 nm), quenched fluorescence, and generated strong photoacoustic (PA) signals. Thus, the ROS-activated and ROS-nonactivated states of ROS-BODIPYs can be detected in vivo by PA and fluorescence imaging. Interestingly, ROS activation is reversible, in the presence of excess reducing agents, e.g., citric acid, converted back to its original state, suggesting that ROS-BODIPYs can be useful for the detection of over production of ROS but not physiological amounts. This makes the imaging independent of accumulation of the activated probe with the physiological ROS amounts and thus strongly improves applicability and highlights the translational potential of ROS-BODIPYs for detecting overexpression of ROS in vivo by optical and photoacoustic imaging methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI