重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Monitoring Retinoblastoma by Machine Learning of Aqueous Humor Metabolic Fingerprinting

房水 代谢组学 质谱法 再现性 视网膜母细胞瘤 化学 医学 肿瘤科 色谱法 眼科 生物化学 基因
作者
Wanshan Liu,Yingxiu Luo,Jingjing Dai,Ludi Yang,Lin Huang,Ruimin Wang,Wei Chen,Yida Huang,Shiyu Sun,Jing Cao,Jiao Wu,Minglei Han,Jiayan Fan,Mengjia He,Kun Qian,Xianqun Fan,Renbing Jia
出处
期刊:Small methods [Wiley]
卷期号:6 (1) 被引量:33
标识
DOI:10.1002/smtd.202101220
摘要

Abstract The most common intraocular pediatric malignancy, retinoblastoma (RB), accounts for ≈10% of cancer in children. Efficient monitoring can enhance living quality of patients and 5‐year survival ratio of RB up to 95%. However, RB monitoring is still insufficient in regions with limited resources and the mortality may even reach over 70% in such areas. Here, an RB monitoring platform by machine learning of aqueous humor metabolic fingerprinting (AH‐MF) is developed, using nanoparticle enhanced laser desorption/ionization mass spectrometry (LDI MS). The direct AH‐MF of RB free of sample pre‐treatment is recorded, with both high reproducibility (coefficient of variation < 10%) and sensitivity (low to 0.3 pmol) at sample volume down to 40 nL only. Further, early and advanced RB patients with area‐under‐the‐curve over 0.9 and accuracy over 80% are differentiated, through machine learning of AH‐MF. Finally, a metabolic biomarker panel of 7 metabolites through accurate MS and tandem MS (MS/MS) with pathway analysis to monitor RB is identified. This work can contribute to advanced metabolic analysis of eye diseases including but not limited to RB and screening of new potential metabolic targets toward therapeutic intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
刚刚
科研通AI6应助Cookie采纳,获得10
1秒前
1秒前
1秒前
天天快乐应助啦啦啦采纳,获得10
1秒前
bkagyin应助热心的曼容采纳,获得30
2秒前
2秒前
园子完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
凌晨五点的完成签到,获得积分10
4秒前
4秒前
为你比拟完成签到,获得积分10
5秒前
6秒前
哭泣的书兰完成签到,获得积分20
6秒前
sevenhill应助DH采纳,获得20
7秒前
顺心纸鹤完成签到,获得积分10
8秒前
wxy完成签到,获得积分10
8秒前
8秒前
jieni完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
聪慧的诗兰完成签到,获得积分10
9秒前
健壮柚子发布了新的文献求助10
10秒前
10秒前
飞0802完成签到,获得积分10
10秒前
11秒前
11秒前
tty关注了科研通微信公众号
11秒前
12秒前
13秒前
宝宝面条完成签到 ,获得积分10
13秒前
13秒前
苏木发布了新的文献求助10
14秒前
lsx发布了新的文献求助30
14秒前
14秒前
娟儿完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673