Effect of nanowire conductive transfer on the performance of batch‐microbial fuel cells

舍瓦内拉 微生物燃料电池 阳极 阴极 希瓦氏菌属 电子转移 材料科学 纳米线 化学工程 电化学 化学 电极 导电体 电子传输链 纳米技术 细菌 复合材料 生物化学 生物 光化学 物理化学 工程类 遗传学
作者
Chin‐Tsan Wang,Tzu‐Hsuan Lan,Aristotle T. Ubando,Wen‐Tong Chong,Alvin B. Culaba,Yung‐Chin Yang
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (5): 6919-6928 被引量:1
标识
DOI:10.1002/er.7568
摘要

Microbial fuel cells (MFCs) are a promising technology that uses microorganisms to simultaneously generate bioelectricity while treating wastewater. To further improve the performance of the MFC, it is essential to understand and evaluate the electron transfer mechanism. However, redesigning the electron transfer mechanism of MFCs through an experimental approach is costly and time-consuming. Hence, in this study, a numerical modeling approach is implemented through the Nernst-Monod kinetic equation, which is validated by experimental results. A nanowire conductive transferring pathway is considered between the microorganisms and anode electrodes of a batch-type MFC. Moreover, two types of bacteria are utilized such as the Shewanella oneidensis MR-1 and Shewanella putrefacient with substrate concentrations of 0.5 M sodium lactate. The results have shown that the limiting current density of the MFC from the computational model is 1514 mA m−2. On the other hand, the current density from the experimental approach for Shewanella oneidensis MR-1 is 497 mA m−2 while for Shewanella putrefacient is 140 mA m−2. The anode activation loss of 491 Ω is lower than the cathode activation loss of 643 Ω, which indicates the relative influence of the cathode activation loss on the bioelectricity generation of the MFC. In addition, the results revealed that the nanowire electron transfer mechanism in the anode biofilm was less affected by the concentration losses. This then indicates that the physical mechanism of the nanowire electron transfer can be effectively used to investigate the batch-type MFCs. In turn, the results of this study will contribute to the development of an improved MFC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
刚刚
小蘑菇应助科研通管家采纳,获得30
1秒前
terence应助科研通管家采纳,获得30
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
害怕的小玉完成签到,获得积分10
2秒前
3秒前
6秒前
梦里花落知多少完成签到,获得积分10
6秒前
7秒前
阳阳发布了新的文献求助10
7秒前
Poyd发布了新的文献求助10
9秒前
开开完成签到,获得积分10
9秒前
tao_blue发布了新的文献求助10
10秒前
10秒前
888完成签到,获得积分10
10秒前
饭神仙鱼完成签到,获得积分10
11秒前
KBYer发布了新的文献求助20
11秒前
Jzhang应助tmpstlml采纳,获得10
12秒前
YoYo发布了新的文献求助10
12秒前
豌豆发布了新的文献求助10
14秒前
15秒前
言叶完成签到,获得积分10
15秒前
16秒前
CipherSage应助清新的冷松采纳,获得10
16秒前
JamesPei应助Poyd采纳,获得10
17秒前
科目三应助药学牛马采纳,获得10
18秒前
lixm发布了新的文献求助10
19秒前
NAA完成签到,获得积分10
20秒前
20秒前
tao_blue完成签到,获得积分10
20秒前
荔枝完成签到,获得积分20
20秒前
20秒前
21秒前
许多知识完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849