计算机科学
序列(生物学)
人工智能
图形
跨度(工程)
词(群论)
命名实体识别
标签
自然语言处理
代表(政治)
理论计算机科学
任务(项目管理)
数学
工程类
土木工程
遗传学
几何学
系统工程
犯罪学
社会学
政治
法学
政治学
生物
作者
Urchade Zaratiana,Nadi Tomeh,Pierre Holat,Thierry Charnois
标识
DOI:10.18653/v1/2022.acl-srw.9
摘要
There are two main paradigms for Named Entity Recognition (NER): sequence labelling and span classification. Sequence labelling aims to assign a label to each word in an input text using, for example, BIO (Begin, Inside and Outside) tagging, while span classification involves enumerating all possible spans in a text and classifying them into their labels. In contrast to sequence labelling, unconstrained span-based methods tend to assign entity labels to overlapping spans, which is generally undesirable, especially for NER tasks without nested entities. Accordingly, we propose GNNer, a framework that uses Graph Neural Networks to enrich the span representation to reduce the number of overlapping spans during prediction. Our approach reduces the number of overlapping spans compared to strong baseline while maintaining competitive metric performance. Code is available at https://github.com/urchade/GNNer.
科研通智能强力驱动
Strongly Powered by AbleSci AI