Joint Wavelet Sub-Bands Guided Network for Single Image Super-Resolution

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 小波 特征提取 小波变换 特征(语言学) GSM演进的增强数据速率 图像分辨率 接头(建筑物) 像素 计算机视觉 建筑工程 哲学 工程类 语言学
作者
Wenbin Zou,Liang Chen,Yi Wu,Yuncheng Zhang,Yuxiang Xu,Jun Shao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 4623-4637 被引量:15
标识
DOI:10.1109/tmm.2022.3179926
摘要

Since deep convolutional neural network (CNN) has achieved excellent results in single image super-resolution (SISR), an increasing number of methods based on CNN have been proposed. Most CNN-based methods are devoted to finding mapping based on pixel intensity while ignoring the importance of frequency information, which can reflect semantic information of images on different bands. This leads to less effectiveness in the reconstruction of high-frequency details. To address this problem, we propose a novel CNN-based super-resolution method named joint wavelet sub-bands guided network (JWSGN). We separate the different frequency information of the image by the WT and then recover this information by a multi-branch network. To recover finer edge details, we propose an edge extraction module, which estimates an edge feature map by using the similarity of all high-frequency sub-bands and then corrects the high-frequency features recovered from each branch by exploiting the edge feature map. Furthermore, we use the complementary relationship between different frequencies to calibrate the high-frequency sub-bands. Finally, the high-resolution image is obtained by inverse wavelet transform. Both qualitative and quantitative experiments show that our method performs excellent performance with the guidance of the edge extraction module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herschelwu完成签到,获得积分10
刚刚
1秒前
zhang发布了新的文献求助10
1秒前
在水一方应助友好若南采纳,获得10
4秒前
暴躁的问兰完成签到 ,获得积分10
5秒前
小蘑菇应助阳光的伊采纳,获得10
6秒前
研友_38K3A8完成签到 ,获得积分10
6秒前
小不溜完成签到 ,获得积分10
7秒前
传奇3应助zhang005on采纳,获得10
9秒前
9秒前
wujiaxin发布了新的文献求助10
10秒前
huo应助微微采纳,获得10
11秒前
13秒前
丘比特应助张靖采纳,获得10
13秒前
NANA完成签到,获得积分10
14秒前
15秒前
15秒前
小牌气发布了新的文献求助10
16秒前
xin发布了新的文献求助30
16秒前
Leif应助木子采纳,获得50
16秒前
17秒前
NANA发布了新的文献求助10
18秒前
TAO发布了新的文献求助10
18秒前
lilysmile001完成签到,获得积分10
18秒前
浅尝离白应助科研通管家采纳,获得60
18秒前
yar应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
嗯哼应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得30
19秒前
ACOY应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
垚乐应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得30
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
自觉秋发布了新的文献求助30
19秒前
Hello应助科研通管家采纳,获得20
20秒前
ACOY应助科研通管家采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092