Prediction of complications of type 2 Diabetes: A Machine learning approach

医学 并发症 糖尿病 肾病 接收机工作特性 曲线下面积 周围神经病变 糖尿病肾病 机器学习 疾病 内科学 外科 人工智能 计算机科学 内分泌学
作者
Antonio Nicolucci,Luca Romeo,Michele Bernardini,Marco Vespasiani,Maria Chiara Rossi,Massimiliano Petrelli,Antonio Ceriello,Paolo Di Bartolo,Emanuele Frontoni,Giacomo Vespasiani
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:190: 110013-110013 被引量:51
标识
DOI:10.1016/j.diabres.2022.110013
摘要

To construct predictive models of diabetes complications (DCs) by big data machine learning, based on electronic medical records.Six groups of DCs were considered: eye complications, cardiovascular, cerebrovascular, and peripheral vascular disease, nephropathy, diabetic neuropathy. A supervised, tree-based learning approach (XGBoost) was used to predict the onset of each complication within 5 years (task 1). Furthermore, a separate prediction for early (within 2 years) and late (3-5 years) onset of complication (task 2) was performed. A dataset of 147.664 patients seen during 15 years by 23 centers was used. External validation was performed in five additional centers. Models were evaluated by considering accuracy, sensitivity, specificity, and area under the ROC curve (AUC).For all DCs considered, the predictive models in task 1 showed an accuracy > 70 %, and AUC largely exceeded 0.80, reaching 0.97 for nephropathy. For task 2, all predictive models showed an accuracy > 70 % and an AUC > 0.85. Sensitivity in predicting the early occurrence of the complication ranged between 83.2 % (peripheral vascular disease) and 88.5 % (nephropathy).Machine learning approach offers the opportunity to identify patients at greater risk of complications. This can help overcoming clinical inertia and improving the quality of diabetes care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kento应助太难啦采纳,获得50
1秒前
面包发布了新的文献求助10
1秒前
磷酸瞳发布了新的文献求助30
2秒前
慕青应助zhangnan采纳,获得10
2秒前
2秒前
852应助阿博采纳,获得10
2秒前
lucky发布了新的文献求助10
2秒前
jiangjiang完成签到,获得积分20
2秒前
cheng完成签到,获得积分10
2秒前
搞怪的幻巧完成签到,获得积分10
2秒前
科研通AI6.1应助白白白采纳,获得10
3秒前
孤独的书雁完成签到,获得积分10
3秒前
朱朱发布了新的文献求助10
4秒前
4秒前
看不懂完成签到,获得积分10
4秒前
科研通AI6.1应助蛋总采纳,获得30
4秒前
柴先生完成签到,获得积分10
5秒前
Magic发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Zhao完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
追寻依风发布了新的文献求助10
7秒前
qwp发布了新的文献求助10
7秒前
看看发布了新的文献求助10
8秒前
8秒前
眯眯眼的裙子完成签到,获得积分10
10秒前
Lucia完成签到 ,获得积分10
10秒前
大盆完成签到,获得积分10
10秒前
开朗醉波发布了新的文献求助10
11秒前
11秒前
泡菜鱼oo完成签到,获得积分20
12秒前
12秒前
Muddle完成签到,获得积分10
12秒前
wacfpp完成签到,获得积分10
12秒前
13秒前
cindy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933