Prediction of complications of type 2 Diabetes: A Machine learning approach

医学 并发症 糖尿病 肾病 接收机工作特性 曲线下面积 周围神经病变 糖尿病肾病 机器学习 疾病 内科学 外科 人工智能 计算机科学 内分泌学
作者
Antonio Nicolucci,Luca Romeo,Michele Bernardini,Marco Vespasiani,Maria Chiara Rossi,Massimiliano Petrelli,Antonio Ceriello,Paolo Di Bartolo,Emanuele Frontoni,G Vespasiani
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:190: 110013-110013 被引量:30
标识
DOI:10.1016/j.diabres.2022.110013
摘要

To construct predictive models of diabetes complications (DCs) by big data machine learning, based on electronic medical records.Six groups of DCs were considered: eye complications, cardiovascular, cerebrovascular, and peripheral vascular disease, nephropathy, diabetic neuropathy. A supervised, tree-based learning approach (XGBoost) was used to predict the onset of each complication within 5 years (task 1). Furthermore, a separate prediction for early (within 2 years) and late (3-5 years) onset of complication (task 2) was performed. A dataset of 147.664 patients seen during 15 years by 23 centers was used. External validation was performed in five additional centers. Models were evaluated by considering accuracy, sensitivity, specificity, and area under the ROC curve (AUC).For all DCs considered, the predictive models in task 1 showed an accuracy > 70 %, and AUC largely exceeded 0.80, reaching 0.97 for nephropathy. For task 2, all predictive models showed an accuracy > 70 % and an AUC > 0.85. Sensitivity in predicting the early occurrence of the complication ranged between 83.2 % (peripheral vascular disease) and 88.5 % (nephropathy).Machine learning approach offers the opportunity to identify patients at greater risk of complications. This can help overcoming clinical inertia and improving the quality of diabetes care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
LaTeXer应助潇洒的凝梦采纳,获得30
7秒前
氯丙嗪完成签到 ,获得积分0
8秒前
852应助XiaotianLiu采纳,获得100
8秒前
young完成签到,获得积分20
8秒前
Dreamable完成签到,获得积分10
10秒前
霜二完成签到 ,获得积分10
11秒前
呜呜发布了新的文献求助10
12秒前
maomao发布了新的文献求助10
12秒前
12秒前
guaishou完成签到,获得积分10
13秒前
Cc完成签到,获得积分10
13秒前
sky完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
winew完成签到 ,获得积分10
18秒前
飘逸的麦片完成签到,获得积分10
19秒前
哈哈哈哈哈完成签到,获得积分20
21秒前
22秒前
仿生躯壳发布了新的文献求助10
23秒前
25秒前
lee完成签到,获得积分10
26秒前
爱偷懒的猪完成签到,获得积分10
27秒前
27秒前
28秒前
maomao完成签到,获得积分10
29秒前
Richard完成签到,获得积分20
29秒前
yihanghh完成签到,获得积分10
31秒前
31秒前
Jenny发布了新的文献求助10
33秒前
FFF完成签到,获得积分10
33秒前
于平川春野完成签到 ,获得积分10
34秒前
34秒前
WN发布了新的文献求助10
34秒前
大模型应助温暖的问候采纳,获得10
34秒前
及禾应助FFF采纳,获得30
38秒前
yzbbb完成签到,获得积分20
38秒前
孟严青完成签到,获得积分0
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343