Dynamic Bayesian network-based disassembly sequencing optimization for electric vehicle battery

电池(电) 动态贝叶斯网络 过程(计算) 电池组 重新使用 计算机科学 序列(生物学) 工程类 可靠性工程 贝叶斯网络 人工智能 生物 操作系统 物理 功率(物理) 量子力学 废物管理 遗传学
作者
Jinhua Xiao,Nabil Anwer,Weidong Li,Benoît Eynard,Chengbin Zheng
出处
期刊:Cirp Journal of Manufacturing Science and Technology [Elsevier BV]
卷期号:38: 824-835 被引量:17
标识
DOI:10.1016/j.cirpj.2022.07.010
摘要

The sharply increasing end-of-life (EOF) battery volume in the global complex energy market has created significant challenges for its recycling and reuse, to reduce environmental pollution and resource waste, and efforts have been focused on the disassembly process considering the uncertainty of electric vehicle (EV) battery pack categories and quality. Compared with traditional disassembly, the EV battery disassembly process needs to consider more uncertainty factors for each EOF battery pack to represent its disassembly structure, which significantly reduces disassembly production efficiency. Even though sequence optimization methods for the disassembly process have been developed to solve these problems, there are still two important challenges that remain: uncertain disassembly structure representation and optimal disassembly sequence selection. To address these challenges, this paper proposes a dynamic disassembly Bayesian network approach based on an EV battery disassembly graph model. This method offers dynamic process optimization to manufacturers to deduce the optimal disassembly sequences using the forward–backward algorithm and the Viterbi decoding algorithm. To validate the proposed method, an EOF battery is used to demonstrate the disassembly sequence selection, which indicates the possibility of massive EV battery disassembly prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aka2012发布了新的文献求助10
1秒前
1秒前
1秒前
陶陶发布了新的文献求助10
1秒前
zhanghl发布了新的文献求助10
1秒前
2秒前
lin发布了新的文献求助10
2秒前
张大鹅完成签到,获得积分10
2秒前
阿飞完成签到,获得积分10
2秒前
3秒前
3秒前
白了个白发布了新的文献求助30
3秒前
深情安青应助sunny30采纳,获得10
3秒前
3秒前
欢呼芒果发布了新的文献求助10
4秒前
Tiannn发布了新的文献求助10
4秒前
qiang完成签到,获得积分10
4秒前
今后应助excalibur采纳,获得10
4秒前
4秒前
科研123发布了新的文献求助10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
lliinn0105完成签到,获得积分20
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
shiyi完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
6秒前
yyy完成签到,获得积分10
6秒前
海豚发布了新的文献求助10
6秒前
乐观小之应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
bingo0913发布了新的文献求助10
6秒前
浣熊应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180