Dynamic Bayesian network-based disassembly sequencing optimization for electric vehicle battery

电池(电) 动态贝叶斯网络 过程(计算) 电池组 重新使用 计算机科学 序列(生物学) 工程类 可靠性工程 贝叶斯网络 人工智能 生物 操作系统 物理 功率(物理) 量子力学 废物管理 遗传学
作者
Jinhua Xiao,Nabil Anwer,Weidong Li,Benoît Eynard,Chengbin Zheng
出处
期刊:Cirp Journal of Manufacturing Science and Technology [Elsevier]
卷期号:38: 824-835 被引量:17
标识
DOI:10.1016/j.cirpj.2022.07.010
摘要

The sharply increasing end-of-life (EOF) battery volume in the global complex energy market has created significant challenges for its recycling and reuse, to reduce environmental pollution and resource waste, and efforts have been focused on the disassembly process considering the uncertainty of electric vehicle (EV) battery pack categories and quality. Compared with traditional disassembly, the EV battery disassembly process needs to consider more uncertainty factors for each EOF battery pack to represent its disassembly structure, which significantly reduces disassembly production efficiency. Even though sequence optimization methods for the disassembly process have been developed to solve these problems, there are still two important challenges that remain: uncertain disassembly structure representation and optimal disassembly sequence selection. To address these challenges, this paper proposes a dynamic disassembly Bayesian network approach based on an EV battery disassembly graph model. This method offers dynamic process optimization to manufacturers to deduce the optimal disassembly sequences using the forward–backward algorithm and the Viterbi decoding algorithm. To validate the proposed method, an EOF battery is used to demonstrate the disassembly sequence selection, which indicates the possibility of massive EV battery disassembly prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
春鸮鸟完成签到 ,获得积分10
1秒前
1秒前
2秒前
orixero应助丁丁采纳,获得10
2秒前
在水一方应助林登万采纳,获得10
2秒前
田様应助温柔的枫采纳,获得10
2秒前
2秒前
脑洞疼应助易寒采纳,获得10
3秒前
3秒前
云轩完成签到,获得积分10
3秒前
虚幻忆南发布了新的文献求助10
3秒前
朴素千亦完成签到,获得积分10
4秒前
137发布了新的文献求助10
5秒前
~~发布了新的文献求助10
5秒前
栗子鱼发布了新的文献求助10
6秒前
俭朴涫发布了新的文献求助10
6秒前
monly完成签到,获得积分0
6秒前
6秒前
Rr发布了新的文献求助10
7秒前
汉堡包应助Dee采纳,获得10
7秒前
lina发布了新的文献求助10
8秒前
善学以致用应助Ain采纳,获得10
8秒前
123完成签到,获得积分20
8秒前
小罗发布了新的文献求助10
8秒前
欧阳枫完成签到 ,获得积分10
9秒前
gossie完成签到,获得积分10
10秒前
星辰大海应助踏实口红采纳,获得10
10秒前
10秒前
塵埃完成签到,获得积分10
10秒前
寒冷剑愁发布了新的文献求助10
10秒前
11秒前
11秒前
ypz完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助hotzera采纳,获得10
11秒前
12秒前
123发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916