Multimodal and multicontrast image fusion via deep generative models

计算机科学 神经影像学 人工智能 背景(考古学) 功能磁共振成像 体素 模式 深度学习 卷积神经网络 可解释性 模式识别(心理学) 机器学习 认知心理学 心理学 神经科学 古生物学 社会科学 社会学 生物
作者
Giovanna Maria Dimitri,S Spasov,Andrea Duggento,Luca Passamonti,Píetro Lió,Nicola Toschi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:88: 146-160 被引量:28
标识
DOI:10.1016/j.inffus.2022.07.017
摘要

Recently, it has become progressively more evident that classic diagnostic labels are unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be better described and conceptualized by grouping individuals into novel categories, which are based on empirically-derived sections of intersecting continua that span both across and beyond traditional categorical borders. In this context, neuroimaging data (i.e. the set of images which result from functional/metabolic (e.g. functional magnetic resonance imaging, functional near-infrared spectroscopy, or positron emission tomography) and structural (e.g. computed tomography, T1-, T2- PD- or diffusion weighted magnetic resonance imaging) carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is due to the fact that every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges. In this paper we design and validate a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter utilization) in order to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) efficiently convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database (n = 974 healthy subjects), demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information (including organic, neuropsychological, personality variables) which was not included in the embedding creation process. The ability to extract meaningful and separable phenotypic information from brain images alone can aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may correspond to different pathophysiological mechanisms unidentifiable to traditional data analysis approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and also empowering clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜子完成签到,获得积分10
1秒前
2秒前
优秀夏柳完成签到,获得积分10
2秒前
唯心止论完成签到,获得积分10
3秒前
十八子完成签到,获得积分10
3秒前
研友_VZG7GZ应助刘呦呦采纳,获得10
5秒前
gr完成签到,获得积分10
6秒前
希望天下0贩的0应助mfr采纳,获得10
8秒前
钰宁完成签到,获得积分10
9秒前
11秒前
11秒前
今后应助miemieyang采纳,获得10
11秒前
走四方完成签到,获得积分10
12秒前
科研通AI2S应助树叶有专攻采纳,获得10
12秒前
九点半上课了完成签到,获得积分10
12秒前
小吴同志完成签到,获得积分10
13秒前
13秒前
张涛完成签到,获得积分20
14秒前
芝麻福福完成签到,获得积分10
14秒前
16秒前
16秒前
Chen发布了新的文献求助10
16秒前
Handy完成签到,获得积分10
16秒前
Alina1874完成签到,获得积分10
17秒前
tombo100发布了新的文献求助10
17秒前
Leo完成签到,获得积分10
17秒前
乐乐应助tinneywu采纳,获得10
19秒前
yyauthor完成签到,获得积分10
20秒前
啊哈哈完成签到 ,获得积分10
20秒前
精明芷巧完成签到 ,获得积分10
20秒前
Wangyn完成签到,获得积分10
22秒前
飞速get完成签到 ,获得积分10
23秒前
吃花生酱的猫完成签到,获得积分10
23秒前
24秒前
24秒前
oak完成签到,获得积分10
25秒前
25秒前
树叶有专攻完成签到,获得积分10
26秒前
科研通AI5应助冲冲超人采纳,获得10
26秒前
cocobear完成签到 ,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761227
求助须知:如何正确求助?哪些是违规求助? 3305211
关于积分的说明 10132715
捐赠科研通 3019179
什么是DOI,文献DOI怎么找? 1657998
邀请新用户注册赠送积分活动 791819
科研通“疑难数据库(出版商)”最低求助积分说明 754638