QSFM: Model Pruning Based on Quantified Similarity Between Feature Maps for AI on Edge

计算机科学 修剪 失败 卷积神经网络 GSM演进的增强数据速率 特征(语言学) 人工智能 边缘设备 模式识别(心理学) 相似性(几何) 推论 滤波器(信号处理) 人工神经网络 计算机视觉 图像(数学) 并行计算 云计算 生物 语言学 操作系统 哲学 农学
作者
Zidu Wang,Xuexin Liu,Long Huang,Yunqing Chen,Yufei Zhang,Zhikang Lin,Rui Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 24506-24515 被引量:10
标识
DOI:10.1109/jiot.2022.3190873
摘要

Convolutional neural networks (CNNs) have been applied in numerous Internet of Things (IoT) devices for multifarious downstream tasks. However, with the increasing amount of data on edge devices, CNNs can hardly complete some tasks in time with limited computing and storage resources. Recently, filter pruning has been regarded as an effective technique to compress and accelerate CNNs, but existing methods rarely prune CNNs from the perspective of compressing high-dimensional tensors. In this article, we propose a novel theory to find redundant information in 3-D tensors, namely, quantified similarity between feature maps (QSFM), and utilize this theory to guide the filter pruning procedure. We perform QSFM on data sets (CIFAR-10, CIFAR-100, and ILSVRC-12) and edge devices and demonstrate that the proposed method can find the redundant information in the neural networks effectively with comparable compression and tolerable drop of accuracy. Without any fine-tuning operation, QSFM can compress ResNet-56 on CIFAR-10 significantly (48.7% FLOPs and 57.9% parameters are reduced) with only a loss of 0.54% in the top-1 accuracy. For the practical application of edge devices, QSFM can accelerate MobileNet-V2 inference speed by 1.53 times with only a loss of 1.23% in the ILSVRC-12 top-1 accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
qiancib202完成签到,获得积分0
6秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
7秒前
顺心寄容完成签到,获得积分10
24秒前
刘志萍完成签到 ,获得积分10
30秒前
西柚柠檬完成签到 ,获得积分10
38秒前
geogydeniel完成签到 ,获得积分10
42秒前
wanci应助cjh采纳,获得10
46秒前
lyu完成签到,获得积分10
48秒前
50秒前
55秒前
56秒前
cjh发布了新的文献求助10
1分钟前
摸鱼主编magazine完成签到,获得积分10
1分钟前
小袁完成签到 ,获得积分10
1分钟前
joe完成签到 ,获得积分10
1分钟前
cjh完成签到,获得积分10
1分钟前
学习完成签到 ,获得积分10
1分钟前
章鱼完成签到,获得积分10
1分钟前
asdf完成签到,获得积分10
1分钟前
cq_2完成签到,获得积分0
1分钟前
guandada完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小young完成签到 ,获得积分10
1分钟前
赘婿应助小鲤鱼本鱼采纳,获得10
1分钟前
钰泠完成签到 ,获得积分10
2分钟前
luan完成签到,获得积分10
2分钟前
天真的棉花糖完成签到 ,获得积分10
2分钟前
gf完成签到 ,获得积分10
2分钟前
潇洒冰蓝完成签到,获得积分10
2分钟前
1中蓝完成签到 ,获得积分10
2分钟前
df完成签到 ,获得积分10
2分钟前
luckweb完成签到,获得积分10
2分钟前
luckweb发布了新的文献求助10
2分钟前
夜色下啖一口茶完成签到 ,获得积分10
2分钟前
郑雅柔完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449747
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550