QSFM: Model Pruning Based on Quantified Similarity Between Feature Maps for AI on Edge

计算机科学 修剪 失败 卷积神经网络 GSM演进的增强数据速率 特征(语言学) 人工智能 边缘设备 模式识别(心理学) 相似性(几何) 推论 滤波器(信号处理) 人工神经网络 计算机视觉 图像(数学) 并行计算 云计算 生物 语言学 操作系统 哲学 农学
作者
Zidu Wang,Xuexin Liu,Long Huang,Yunqing Chen,Yufei Zhang,Zhikang Lin,Rui Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 24506-24515 被引量:10
标识
DOI:10.1109/jiot.2022.3190873
摘要

Convolutional neural networks (CNNs) have been applied in numerous Internet of Things (IoT) devices for multifarious downstream tasks. However, with the increasing amount of data on edge devices, CNNs can hardly complete some tasks in time with limited computing and storage resources. Recently, filter pruning has been regarded as an effective technique to compress and accelerate CNNs, but existing methods rarely prune CNNs from the perspective of compressing high-dimensional tensors. In this article, we propose a novel theory to find redundant information in 3-D tensors, namely, quantified similarity between feature maps (QSFM), and utilize this theory to guide the filter pruning procedure. We perform QSFM on data sets (CIFAR-10, CIFAR-100, and ILSVRC-12) and edge devices and demonstrate that the proposed method can find the redundant information in the neural networks effectively with comparable compression and tolerable drop of accuracy. Without any fine-tuning operation, QSFM can compress ResNet-56 on CIFAR-10 significantly (48.7% FLOPs and 57.9% parameters are reduced) with only a loss of 0.54% in the top-1 accuracy. For the practical application of edge devices, QSFM can accelerate MobileNet-V2 inference speed by 1.53 times with only a loss of 1.23% in the ILSVRC-12 top-1 accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
刚刚
1秒前
3秒前
3秒前
左右脑发布了新的文献求助10
4秒前
烟花应助Behappy采纳,获得10
4秒前
大模型应助陈玉婷采纳,获得10
4秒前
翊星完成签到,获得积分10
4秒前
香蕉觅云应助材料生采纳,获得10
5秒前
思源应助茜茜王子采纳,获得10
6秒前
xingstar完成签到,获得积分20
6秒前
劲秉应助谨慎的紫烟采纳,获得10
8秒前
小二郎应助shitou采纳,获得10
8秒前
8秒前
10秒前
大个应助arcval采纳,获得30
11秒前
11秒前
爆米花应助叶子采纳,获得10
12秒前
x笑一完成签到,获得积分10
15秒前
15秒前
悦耳的城发布了新的文献求助10
16秒前
16秒前
酷酷冰之发布了新的文献求助30
17秒前
Lucas应助投必快业必毕采纳,获得10
18秒前
20秒前
劲秉应助小笼包采纳,获得30
20秒前
材料生发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
26秒前
茜茜王子发布了新的文献求助10
27秒前
zaphkiel完成签到 ,获得积分10
27秒前
29秒前
31秒前
33秒前
34秒前
清爽冰夏完成签到,获得积分10
35秒前
SYLH应助安详忆梅采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465415
求助须知:如何正确求助?哪些是违规求助? 3058602
关于积分的说明 9062114
捐赠科研通 2748875
什么是DOI,文献DOI怎么找? 1508182
科研通“疑难数据库(出版商)”最低求助积分说明 696871
邀请新用户注册赠送积分活动 696520