Characterization of Industrial Smoke Plumes from Remote Sensing Data

烟雾 环境科学 遥感 羽流 数据集 多光谱图像 计算机科学 气象学 人工智能 地理
作者
Michael Mommert,Mario Sigel,Marcel Neuhausler,Linus Scheibenreif,Damian Borth
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2011.11344
摘要

The major driver of global warming has been identified as the anthropogenic release of greenhouse gas (GHG) emissions from industrial activities. The quantitative monitoring of these emissions is mandatory to fully understand their effect on the Earth's climate and to enforce emission regulations on a large scale. In this work, we investigate the possibility to detect and quantify industrial smoke plumes from globally and freely available multi-band image data from ESA's Sentinel-2 satellites. Using a modified ResNet-50, we can detect smoke plumes of different sizes with an accuracy of 94.3%. The model correctly ignores natural clouds and focuses on those imaging channels that are related to the spectral absorption from aerosols and water vapor, enabling the localization of smoke. We exploit this localization ability and train a U-Net segmentation model on a labeled sub-sample of our data, resulting in an Intersection-over-Union (IoU) metric of 0.608 and an overall accuracy for the detection of any smoke plume of 94.0%; on average, our model can reproduce the area covered by smoke in an image to within 5.6%. The performance of our model is mostly limited by occasional confusion with surface objects, the inability to identify semi-transparent smoke, and human limitations to properly identify smoke based on RGB-only images. Nevertheless, our results enable us to reliably detect and qualitatively estimate the level of smoke activity in order to monitor activity in industrial plants across the globe. Our data set and code base are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小潘同学完成签到,获得积分10
1秒前
1秒前
科研通AI5应助传统的海露采纳,获得10
2秒前
学术刘亦菲完成签到,获得积分10
2秒前
成就的烧鹅完成签到,获得积分20
2秒前
3秒前
dd发布了新的文献求助10
3秒前
luoshi应助leon采纳,获得30
4秒前
4秒前
wang完成签到,获得积分10
4秒前
可爱的函函应助hu采纳,获得10
4秒前
4秒前
我测你码关注了科研通微信公众号
5秒前
下课了吧发布了新的文献求助10
5秒前
jy发布了新的文献求助10
5秒前
绘梨衣完成签到,获得积分10
6秒前
数据线完成签到,获得积分10
6秒前
完美世界应助甜甜的难敌采纳,获得30
7秒前
满堂花醉三千客完成签到 ,获得积分10
7秒前
7秒前
7秒前
gao完成签到,获得积分10
8秒前
LiuRuizhe完成签到,获得积分10
8秒前
绘梨衣发布了新的文献求助10
8秒前
8秒前
9秒前
淡定紫菱发布了新的文献求助10
10秒前
李繁蕊发布了新的文献求助10
12秒前
万能图书馆应助愉快寄真采纳,获得10
12秒前
Rrr发布了新的文献求助10
12秒前
13秒前
13秒前
高兴藏花发布了新的文献求助10
13秒前
14秒前
顾闭月发布了新的文献求助10
16秒前
励志小薛完成签到,获得积分20
17秒前
doudou完成签到,获得积分10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794