Characterization of Industrial Smoke Plumes from Remote Sensing Data

烟雾 环境科学 遥感 羽流 数据集 多光谱图像 计算机科学 气象学 人工智能 地理
作者
Michael Mommert,Mario Sigel,Marcel Neuhausler,Linus Scheibenreif,Damian Borth
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2011.11344
摘要

The major driver of global warming has been identified as the anthropogenic release of greenhouse gas (GHG) emissions from industrial activities. The quantitative monitoring of these emissions is mandatory to fully understand their effect on the Earth's climate and to enforce emission regulations on a large scale. In this work, we investigate the possibility to detect and quantify industrial smoke plumes from globally and freely available multi-band image data from ESA's Sentinel-2 satellites. Using a modified ResNet-50, we can detect smoke plumes of different sizes with an accuracy of 94.3%. The model correctly ignores natural clouds and focuses on those imaging channels that are related to the spectral absorption from aerosols and water vapor, enabling the localization of smoke. We exploit this localization ability and train a U-Net segmentation model on a labeled sub-sample of our data, resulting in an Intersection-over-Union (IoU) metric of 0.608 and an overall accuracy for the detection of any smoke plume of 94.0%; on average, our model can reproduce the area covered by smoke in an image to within 5.6%. The performance of our model is mostly limited by occasional confusion with surface objects, the inability to identify semi-transparent smoke, and human limitations to properly identify smoke based on RGB-only images. Nevertheless, our results enable us to reliably detect and qualitatively estimate the level of smoke activity in order to monitor activity in industrial plants across the globe. Our data set and code base are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dkakxncnsksl完成签到 ,获得积分10
刚刚
可爱的函函应助踏雪无痕采纳,获得10
刚刚
研友_8yPeXZ发布了新的文献求助20
1秒前
海海完成签到,获得积分10
3秒前
3秒前
感性的俊驰完成签到,获得积分10
3秒前
巴拉巴拉完成签到,获得积分10
4秒前
淡定小懒猪完成签到,获得积分10
4秒前
4秒前
JasonSun完成签到,获得积分10
5秒前
6秒前
chillin发布了新的文献求助100
7秒前
ddj完成签到 ,获得积分10
7秒前
8秒前
8秒前
巴拉巴拉发布了新的文献求助10
8秒前
9秒前
yyz发布了新的文献求助10
10秒前
11秒前
11秒前
冰晨完成签到,获得积分10
13秒前
老薛发布了新的文献求助10
13秒前
nczpf2010发布了新的文献求助10
14秒前
dudu10000发布了新的文献求助10
15秒前
cjx完成签到,获得积分10
16秒前
wwz应助科研通管家采纳,获得10
17秒前
star应助科研通管家采纳,获得30
17秒前
盒子应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得30
18秒前
情怀应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023