Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach

强化学习 弹道 水准点(测量) 计算机科学 马尔可夫决策过程 深度学习 轨迹优化 数学优化 时差学习 人工神经网络 加速度 人工智能 马尔可夫过程 最优控制 数学 天文 地理 物理 统计 经典力学 大地测量学
作者
Yanqiu Cheng,Xianbiao Hu,Kuanmin Chen,Xinlian Yu,Yulong Luo
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:27 (3): 396-410 被引量:22
标识
DOI:10.1080/15472450.2022.2046472
摘要

This manuscript presents an Adam optimization-based Deep Reinforcement Learning model for Mixed Traffic Flow control (ADRL-MTF), so as to guide Connected and Autonomous vehicle's (CAV) longitudinal trajectory on a typical urban roadway with signal-controlled intersections. Two improvements are made when compared with prior literatures. First, the common assumptions to simplify the problem solving, such as dividing a vehicle trajectory into several segments with constant acceleration/deceleration, are avoided, to improve the modeling realism. Second, built on the efficient Adam Optimization and Deep Q-Learning, the proposed model avoids the enumeration of states and actions, and is computational efficient and suitable for real time applications. The mixed traffic flow dynamic is firstly formulated as a finite Markov decision process (MDP) model. Due to the discretization of time, space and speed, this MDP model becomes high-dimensional in state, and is very challenging to solve. We then propose a temporal difference-based deep reinforcement learning approach, with ε-greedy for exploration-exploitation balance. Two neural networks are developed to replace the traditional Q function and generate the targets in the Q-learning update. These two neural networks are trained by the Adam optimization algorithm, which extends stochastic gradient descent and considers the second moments of the gradients, and is thus highly computational efficient and has lower memory requirements. The proposed model is shown to reduce fuel consumption by 7.8%, which outperforms a prior benchmark model based on Monte Carlo Tree Search. The model's runtime efficiency and stability are tested, and the sensitivity analysis is also performed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助wangjinhe采纳,获得10
1秒前
wwho_O发布了新的文献求助10
1秒前
蒋时晏举报成太求助涉嫌违规
2秒前
3秒前
CodeCraft应助粉红切开黑采纳,获得10
5秒前
sttarrr发布了新的文献求助10
6秒前
yar应助515yanke采纳,获得10
6秒前
20000完成签到,获得积分10
8秒前
damie完成签到 ,获得积分10
8秒前
FashionBoy应助Zzj采纳,获得10
9秒前
magic发布了新的文献求助10
10秒前
10秒前
Ice发布了新的文献求助10
11秒前
13秒前
xiaozhao发布了新的文献求助10
13秒前
春野花枝完成签到,获得积分20
14秒前
sk完成签到,获得积分10
15秒前
15秒前
jjsss完成签到,获得积分10
16秒前
17秒前
隐形曼青应助magic采纳,获得10
17秒前
18秒前
勤劳志泽完成签到,获得积分10
18秒前
Inuit发布了新的文献求助10
19秒前
bkagyin应助知性的友易采纳,获得10
19秒前
行毅文完成签到,获得积分10
22秒前
Flowers完成签到,获得积分10
23秒前
领导范儿应助小巧的雪柳采纳,获得10
24秒前
25秒前
NexusExplorer应助懒洋洋采纳,获得10
26秒前
在水一方应助lll采纳,获得10
26秒前
28秒前
求求好运吧完成签到,获得积分10
30秒前
橘子汽水发布了新的文献求助10
30秒前
乐乐应助谦让的慕凝采纳,获得10
30秒前
123应助虎虎虎采纳,获得10
31秒前
magic发布了新的文献求助10
31秒前
小糖完成签到 ,获得积分10
31秒前
细雨带风吹完成签到,获得积分10
31秒前
zgy1106完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293276
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441615
捐赠科研通 2601546
什么是DOI,文献DOI怎么找? 1419967
科研通“疑难数据库(出版商)”最低求助积分说明 660479
邀请新用户注册赠送积分活动 643063