Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection

电化学发光 检出限 分子印迹聚合物 试剂 吸附 材料科学 纳米颗粒 化学 选择性 色谱法 纳米技术 有机化学 催化作用
作者
Shuhuai Li,Chaohai Pang,Xionghui Ma,Yu‐Wei Wu,Mingyue Wang,Zhixiang Xu,Jinhui Luo
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107345-107345 被引量:31
标识
DOI:10.1016/j.microc.2022.107345
摘要

To broaden the applicability of electrochemiluminescence (ECL) sensors toward the sensitive and selective detection of trace antibiotic residues, new ECL reagents are required. Herein, a novel molecularly imprinted sensor based on an aggregation-induced ECL reagent was fabricated for the sensitive detection of ciprofloxacin (CFX). A covalent organic framework with aggregation-induced ECL (COF-AIECL) was synthesised using a boric acid condensation dehydration reaction. Then, an electrode surface was modified with COF-AIECL as a signal element and nanozymatic ferriferrous oxide@platinum nanoparticles (Fe3O4@Pt NPs) as a signal amplification element. Subsequently, using CFX as a template molecule, a molecularly imprinted polymer (MIP) was fabricated on the modified electrode. The ECL signal of COF-AIECL was catalytically amplified by the Fe3O4@Pt NPs, whereas CFX effectively quenched this signal. Consequently, the ECL signal was controlled by CFX elution from and adsorption by the MIP, thus establishing a new method for CFX detection. The sensitivity of the sensor was greatly enhanced by the aggregation-induced luminescence effect and nanozyme amplification, whereas the MIP effectively improved the selectivity for CFX. Under optimal conditions, the electrochemical sensor exhibited a linear detection range of 2 × 10−12 to 3 × 10−9 mol L−1, with a detection limit of 5.98 × 10−13 mol L−1. Furthermore, in untreated milk samples, CFX recoveries of 92.0%–111% were achieved. Thus, the developed sensor exhibited good reproducibility, stability, and selectivity for CFX detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助三岁半采纳,获得10
刚刚
2秒前
2秒前
3秒前
深情的新儿完成签到,获得积分10
3秒前
4秒前
yly123完成签到,获得积分10
5秒前
5秒前
Betty完成签到 ,获得积分10
6秒前
现代的雪珍完成签到 ,获得积分20
7秒前
南枝焙雪发布了新的文献求助10
8秒前
悟空完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
wangxiaoyating完成签到,获得积分10
10秒前
HJJHJH发布了新的文献求助10
10秒前
米粒完成签到,获得积分20
11秒前
Hello应助Echo采纳,获得20
11秒前
java发布了新的文献求助10
12秒前
leezz完成签到,获得积分10
13秒前
阿豪发布了新的文献求助10
14秒前
林由夕完成签到,获得积分20
15秒前
研友_5ZlY68发布了新的文献求助10
15秒前
fanny完成签到,获得积分10
17秒前
17秒前
20秒前
20秒前
20秒前
20秒前
传奇3应助满意元枫采纳,获得10
21秒前
fanny发布了新的文献求助10
21秒前
22秒前
hxh发布了新的文献求助10
23秒前
2105完成签到,获得积分10
23秒前
24秒前
谨慎的谷槐完成签到,获得积分10
24秒前
chuanxue发布了新的文献求助10
24秒前
来日方长发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232