清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A computer vision framework using Convolutional Neural Networks for airport-airside surveillance

空中交通管制 工作量 实时计算 跑道 卷积神经网络 计算机科学 事件(粒子物理) 运输工程 模拟 工程类 人工智能 物理 考古 量子力学 历史 航空航天工程 操作系统
作者
Phat Thai,Sameer Alam,Nimrod Lilith,Binh T. Nguyen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:137: 103590-103590 被引量:21
标识
DOI:10.1016/j.trc.2022.103590
摘要

Modern airports often have large and complex airside environments featuring multiple runways, with changing configurations, numerous taxiways for effective circulation of flights and tens, if not hundreds, of gates. With inherent uncertainties in gate push-back and taxiway routing, efficient surveillance and management of airport-airside operations is a highly challenging task for air traffic controllers. An increase in air traffic may lead to gate delays, taxiway congestion, taxiway incursions as well as significant increase in the workload of air traffic controllers. With the advent of Digital Towers, airports are increasingly being equipped with surveillance camera systems. This paper proposes a novel computer vision framework for airport-airside surveillance, using cameras to monitor ground movement objects for safety enhancement and operational efficiency improvement. The framework adopts Convolutional Neural Networks and camera calibration techniques for aircraft detection and tracking, push-back prediction, and maneuvering monitoring. The proposed framework is applied on video camera feeds from Houston Airport, USA (for maneuvering monitoring) and Obihiro Airport, Japan (for push-back prediction). The object detection models of the proposed framework achieve up to 73.36% average precision on Houston airport and 87.3% on Obihiro airport. The framework estimates aircraft speed and distance with low error (up to 6 meters), and aircraft push-back is predicted with an average error of 3 min from the time an aircraft arrives with the error-rate reducing until the aircraft’s actual push-back event.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ropuuu完成签到,获得积分10
9秒前
桃沏乌龙发布了新的文献求助10
10秒前
大园完成签到 ,获得积分10
11秒前
飞云完成签到 ,获得积分10
12秒前
默默完成签到 ,获得积分10
33秒前
like完成签到 ,获得积分10
40秒前
zxdw完成签到,获得积分10
43秒前
桃沏乌龙完成签到,获得积分10
48秒前
aaronroseman完成签到 ,获得积分10
53秒前
swayqur完成签到,获得积分10
59秒前
别拿暗恋当饭吃完成签到 ,获得积分10
59秒前
莎莎士比亚完成签到,获得积分10
1分钟前
summer完成签到,获得积分20
1分钟前
1分钟前
summer发布了新的文献求助10
1分钟前
xiaowangwang完成签到 ,获得积分10
1分钟前
my应助summer采纳,获得10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
lu完成签到 ,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
2分钟前
司空御宇完成签到 ,获得积分10
2分钟前
缓慢的绝施完成签到,获得积分10
2分钟前
充电宝应助缓慢的绝施采纳,获得10
2分钟前
丝丢皮的完成签到 ,获得积分10
2分钟前
丝丢皮得完成签到 ,获得积分10
2分钟前
隐形的妙之完成签到,获得积分10
2分钟前
Nan发布了新的文献求助10
3分钟前
3分钟前
hhuajw应助Nan采纳,获得10
3分钟前
3分钟前
jiuzhege完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
牛拉犁完成签到 ,获得积分10
3分钟前
青海盐湖所李阳阳完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
chengzi发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789162
求助须知:如何正确求助?哪些是违规求助? 5716272
关于积分的说明 15474278
捐赠科研通 4917049
什么是DOI,文献DOI怎么找? 2646747
邀请新用户注册赠送积分活动 1594430
关于科研通互助平台的介绍 1548891