A computer vision framework using Convolutional Neural Networks for airport-airside surveillance

空中交通管制 工作量 实时计算 跑道 卷积神经网络 计算机科学 事件(粒子物理) 运输工程 模拟 工程类 人工智能 历史 操作系统 物理 航空航天工程 考古 量子力学
作者
Phat Thai,Sameer Alam,Nimrod Lilith,Binh T. Nguyen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:137: 103590-103590 被引量:21
标识
DOI:10.1016/j.trc.2022.103590
摘要

Modern airports often have large and complex airside environments featuring multiple runways, with changing configurations, numerous taxiways for effective circulation of flights and tens, if not hundreds, of gates. With inherent uncertainties in gate push-back and taxiway routing, efficient surveillance and management of airport-airside operations is a highly challenging task for air traffic controllers. An increase in air traffic may lead to gate delays, taxiway congestion, taxiway incursions as well as significant increase in the workload of air traffic controllers. With the advent of Digital Towers, airports are increasingly being equipped with surveillance camera systems. This paper proposes a novel computer vision framework for airport-airside surveillance, using cameras to monitor ground movement objects for safety enhancement and operational efficiency improvement. The framework adopts Convolutional Neural Networks and camera calibration techniques for aircraft detection and tracking, push-back prediction, and maneuvering monitoring. The proposed framework is applied on video camera feeds from Houston Airport, USA (for maneuvering monitoring) and Obihiro Airport, Japan (for push-back prediction). The object detection models of the proposed framework achieve up to 73.36% average precision on Houston airport and 87.3% on Obihiro airport. The framework estimates aircraft speed and distance with low error (up to 6 meters), and aircraft push-back is predicted with an average error of 3 min from the time an aircraft arrives with the error-rate reducing until the aircraft’s actual push-back event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助第三方斯蒂芬采纳,获得10
刚刚
刚刚
柯忻完成签到,获得积分10
1秒前
高挑的梦芝完成签到,获得积分10
2秒前
SDFSGFDR完成签到,获得积分10
4秒前
7秒前
王不留行完成签到,获得积分10
7秒前
冰勾板勾完成签到,获得积分0
8秒前
在下天池宫人间行走完成签到,获得积分10
8秒前
你的微笑我舍不得完成签到,获得积分10
10秒前
10秒前
Akim应助优美鱼采纳,获得10
11秒前
11秒前
12秒前
12秒前
Jenna完成签到 ,获得积分10
14秒前
充电宝应助英俊的咖啡豆采纳,获得10
18秒前
18秒前
根根发布了新的文献求助10
19秒前
小蘑菇应助随缘采纳,获得10
19秒前
敏er好学完成签到,获得积分10
21秒前
田様应助善良又夏采纳,获得10
23秒前
23秒前
关山月发布了新的文献求助10
24秒前
24秒前
科研通AI2S应助刺五加采纳,获得10
24秒前
欢呼的茗茗完成签到 ,获得积分10
26秒前
26秒前
27秒前
杜兰特发布了新的文献求助10
27秒前
27秒前
Rubby应助冷酷的珊珊采纳,获得10
28秒前
character577完成签到,获得积分10
28秒前
29秒前
关山月完成签到,获得积分10
30秒前
30秒前
随缘发布了新的文献求助10
30秒前
31秒前
32秒前
chen完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361