Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation

材料科学 热导率 复合材料 剥脱关节 氮化硼 热传导 热压 聚酰亚胺 石墨烯 纳米技术 图层(电子)
作者
Dongliang Ding,Minhao Zou,Xu Wang,Guangzhao Qin,Shiyu Zhang,Siew Yin Chan,Qingyong Meng,Zhen‐Guo Liu,Qiuyu Zhang,Yanhui Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:437: 135438-135438 被引量:55
标识
DOI:10.1016/j.cej.2022.135438
摘要

Demand for thermal management materials (TMMs) with efficient in-plane heat dissipation has grown with the advancement of intelligent wireless communication equipment. Herein, polydisperse hexagonal boron nitride (ae-BN) in the range of micrometers to nanometers via aqueous-assisted exfoliation. First principles investigation revealed that ae-BN possess high intrinsic thermal conductivity. A series of ae-BN/PI composites were then fabricated through facile methods: vacuum-filtration and hot-pressing. The ae-BN/PI composites with 30 vol% ae-BN loading exhibited superior in-plane thermal conductivity (6.57 W/(m·K) compared to pristine h-BN/PI composite (3.92 W/(m·K)). SEM images and structural modeling of ae-BN/PI composites revealed that thermal conduction pathways constructed in the composites continuously increased with ae-BN content, attributing to an increased contact probability in composites with higher content of ae-BN. Reduction in thermal boundary resistance of ae-BN/PI composites was proved by our iterative EMT model. In-plane thermal conductivity of ae-BN/PI composites with different fillers’ contents at variable temperatures were predicted by machine learning technique, viz. artificial neural network (ANN) model. In brief, ae-BN/PI composites with high thermal conductivity, electrical insulation, thermal stability, and mechanical strength were successfully fabricated. The heat conduction mechanism of ae-BN/PI composites was investigated, serving as an important piece of puzzle for the advancement in TMMs of the advanced electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddddddddddd发布了新的文献求助10
刚刚
666发布了新的文献求助10
刚刚
自由雨莲发布了新的文献求助10
1秒前
1秒前
2秒前
打打应助chengzi采纳,获得10
4秒前
kkscanl完成签到 ,获得积分10
4秒前
Pedro完成签到,获得积分20
4秒前
4秒前
科研通AI6应助美满的凤灵采纳,获得10
5秒前
June发布了新的文献求助10
5秒前
和谐念瑶发布了新的文献求助10
5秒前
独特海白完成签到,获得积分10
6秒前
7秒前
安静代萱发布了新的文献求助10
7秒前
糊涂的炳完成签到,获得积分10
10秒前
完美世界应助阿辉采纳,获得10
10秒前
求求科研发布了新的文献求助10
11秒前
Camellia发布了新的文献求助20
11秒前
hangzhen发布了新的文献求助10
12秒前
YEZQ完成签到,获得积分10
13秒前
pluto应助涵涵采纳,获得10
14秒前
橘里完成签到,获得积分10
14秒前
CHEN完成签到,获得积分20
15秒前
Augenstern关注了科研通微信公众号
16秒前
Quanta发布了新的文献求助10
16秒前
Lucas应助保奔采纳,获得10
18秒前
英俊的铭应助求求科研采纳,获得10
18秒前
19秒前
给钱谢谢发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
25秒前
丘比特应助收费采纳,获得10
25秒前
shunshun51213完成签到,获得积分10
25秒前
lll完成签到,获得积分10
26秒前
慕青应助自由雨莲采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567358
求助须知:如何正确求助?哪些是违规求助? 4652068
关于积分的说明 14698727
捐赠科研通 4593864
什么是DOI,文献DOI怎么找? 2520491
邀请新用户注册赠送积分活动 1492641
关于科研通互助平台的介绍 1463607